1.变量:在一个变化过程中,数值发生变化的量为变量
2.常量:在一个变化过程中,数值始终不变的量为常量
3.函数的概念:在一个变化过程中,如果有两个变量x和y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就说x是自变量,y是x的函数
4.函数的三种表示方法:
(1)函数关系是用y与x的关系式给出的(解析法)
(2)函数关系是用表格给出的(列表法)
(3)函数关系是用图像给出的(图像法)
5.对于一个函数,如果把自变量与函数的每对对应值分别做为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图像
正比例函数
1.正比例函数:一般的,形如y=kx(k是常数,k≠0,x的次数为1)的函数,叫做正比例函数,其中k叫做比例系数
2.步骤:列表、描点、连线
3.正比例函数的图像特点:
(1)正比例函数的图像都是经过坐标原点的直线
(2)作y=kx的图像时,应先选取两点,通常选点(0,0)与点(1,k);然后在坐标平面内描点(0,0)与点(1,k);最后过这两点连线
(3)当k>0时,直线y=kx经过第一、三象限,从左向右上升,即:随着x的增大y也增大
(4)当k<0时,直线y=kx经过第二、四象限,从左向右下降,即:随着x的增大y反而减小
(5)确定正比例函数的解析式需要一个条件(过原点)
一次函数
1. 一般的,形如y=kx+b (k,b是常数,k≠0 x的次数为1) 的函数,叫做一次函数
2.当b=0时,即y=kx,所以说正比例函数是特殊的一次函数
3.确定一次函数的解析式需要两个条件(不过原点)
4.先设出函数解析式,再根据条件确定解析式中未知的系数,从而得出函数解析式中的方法,叫做待定系数法
5.一元一次方程:
(1)从数的角度看:求ax+b=0的解 → x为何值时,y=ax+b的值等于0
(2)从形的角度看:求ax+b=0(a≠0)的解 → 确定直线y=ax+b与x轴交点的x值
6.一元一次不等式:
(1)从数的角度看:求ax+b=0的解 → x为何值时,y=ax+b的值等于0
(2)从形的角度看:求ax+b=0(a≠0)的解 → 确定直线y=ax+b与x轴上方的图像所对应的x的值
任意两个一次函数图像的交点坐标,都是它们所对应的二元一次方程组的解