最小公倍数(Least Common Multiple,简称LCM)是指两个或多个整数共有的倍数中最小的一个。如果有两个整数 a 和 b,它们的最小公倍数记作 LCM(a, b) ,它满足以下条件:
1. LCM(a, b) 是 a 和 b 的倍数。
2. 没有比 LCM(a, b) 更小的数同时是 a 和 b 的倍数。
计算两个数的最小公倍数的一种常用方法是使用它们的最大公约数(Greatest Common Divisor,简称GCD)。两个数 a 和 b 的最小公倍数可以通过以下公式计算得出:
这里的 GCD(a, b) 是 a 和 b 的最大公约数,而 |a ·b| 是 a 和 b 乘积的绝对值。
例如,如果我们要找出 12 和 18 的最小公倍数,首先计算它们的最大公约数,12 和 18 的最大公约数是 6。然后使用上面的公式:
所以,12 和 18 的最小公倍数是 36。
问题描述
编写 C 语言程序,从键盘读入2个数字,计算出这两个数的最小公倍数
输入格式
一共 2 行数据
输出格式
输出“最小公倍数为:”
#include<stdio.h>
int gy(int x,int y){
int r;
if(x<y)
{
r=x;
x=y;
y=r;
}
r=x%y;
while(r!=0){
x=y;
y=r;
r=x%y;
}
return(y);
}
int gb(int m,int n)
{
int p;
p = m*n/gy(m,n);
return(p);
}
int main(){
int a,b,c;
printf("请输入第一个数字:");
scanf("%d",&a);
printf("请输入第二个数字:");
scanf("%d",&b);
c = gb(a,b);
printf("最小公倍数为:%d",c);
}
运行结果如下: