再见了,各位

本人不再使用csdn账号了,各位后会有期吧....

### 关于李沐及其相关资源 关于李沐的工作和贡献,在多个方面都有所体现。李沐参与了多项开源项目的开发工作,其中包括对多种编程语言的支持,如 Java、C++、Python、Go、JS、TS、C#、Swift 和 Zig 等[^1]。 #### 李沐代码示例 虽然具体的个人代码示例未直接提及,但考虑到李沐在机器学习领域尤其是深度学习方面的深厚造诣以及其对于Transformer架构的研究,可以从他精读并推广的技术成果中窥见一二。例如,在研究Swin Transformer的过程中,该模型采用了一种新颖的方法来减少计算复杂度,仅需在线性时间内处理不同尺寸的输入图像,这得益于局部窗口内的多头自注意力机制(W-MSA)[^5]。 ```python import torch.nn as nn class SwinTransformerBlock(nn.Module): def __init__(self, dim, num_heads, window_size=7, shift_size=0, mlp_ratio=4., qkv_bias=True, drop=0., attn_drop=0., drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm): super().__init__() self.window_size = window_size self.shift_size = shift_size # Window-based multi-head self attention (W-MSA) or Shifted W-MSA if min(self.input_resolution) <= self.window_size: # 若输入分辨率小于等于窗口大小,则不进行移位操作,并设置窗口大小为输入分辨率 self.shift_size = 0 self.window_size = min(self.input_resolution) assert 0 <= self.shift_size < self.window_size, "shift_size must in 0-window_size" self.attn = WindowAttention( dim, window_size=(self.window_size, self.window_size), num_heads=num_heads, qkv_bias=qkv_bias, attn_drop=attn_drop, proj_drop=drop) ``` 此段代码展示了如何定义一个基本的Swin Transformer模块,其中包含了关键组件——基于窗口的多头自注意机制(W-MSA),这是由李沐等人深入探讨的一种有效降低计算成本的方法之一。 #### 李沐编程教程与开源项目 除了理论上的探索外,李沐还积极参与到实际应用当中。创办了专注于游戏娱乐领域的大规模模型应用初创企业Boson AI,表明了其不仅限于学术界的努力方向[^4]。此外,作为一位活跃的技术分享者,李沐可能也提供了不少公开可访问的教学材料或文档,帮助更多开发者理解和掌握最新的技术趋势和发展动态。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值