神经网络—resnet101(pytorch)

ResNet-101 是一种深度卷积神经网络(CNN),属于残差网络(Residual Network)系列。它在许多计算机视觉任务中表现出色,比如图像分类、目标检测等。以下是 ResNet-101 网络的详细介绍:

1. 背景与目标

ResNet-101 是由 Kaiming He 等人在 2015 年提出的 ResNet(Residual Network)中的一个变种。其主要创新是引入了残差学习(Residual Learning)的方法,这使得网络可以更深而不容易出现梯度消失或梯度爆炸的问题,从而提升了网络的表现力和训练效率。

2. 网络结构

基本构建块
  • 残差块(Residual Block):ResNet-101 使用的主要构建块是 Bottleneck 残差块。每个 Bottleneck 块包含三个卷积层:

    1. 1x1 卷积:用于降低维度。
    2. 3x3 卷积:用于提取特征。
    3. 1x1 卷积:用于恢复维度。

    这些卷积层被 Batch Normalization 和 ReLU 激活函数所包围。残差块的输出与输入通过加法操作进行融合,形成最终的块输出。

网络层次
  • 输入层:通常是一个大尺寸的卷积层(例如 7x7 卷积,步幅为 2)和一个最大池化层。

  • 四个阶段(Stages)

    • Layer 1:由若干个 Bottleneck 残差块组成,通常有 3 个块。
    • Layer 2:由若干个 Bottleneck 残差块组成,通常有 4 个块。
    • Layer 3:由若干个 Bottleneck 残差块组成,通常有 23 个块。
    • Layer 4:由若干个 Bottleneck 残差块组成,通常有 3 个块。

    每一层的输出通道数和步幅都是不同的,通常是随着网络深度的增加而增加。

  • 输出层:全局平均池化层(Global Average Pooling)将特征图的空间维度压缩到 1x1,然后通过全连接层(Fully Connected Layer)进行分类或回归。

3. 优点

  • 深度网络训练:由于引入了残差学习,ResNet 可以有效训练非常深的网络,而不会出现传统深度网络中的梯度消失或梯度爆炸问题。

  • 性能优越:ResNet-101 在多个标准数据集(如 ImageNet)上表现优越,证明了其有效性和泛化能力。

  • 迁移学习:可以将预训练的 ResNet-101 模型用于其他任务,如目标检测、图像分割等,具有很好的迁移学习能力。

4. 应用

  • 图像分类:在大规模数据集(如 ImageNet)上的图像分类任务中,ResNet-101 表现优异。

  • 目标检测:作为 backbone 网络,ResNet-101 被广泛应用于目标检测模型中,如 Faster R-CNN 和 Mask R-CNN。

  • 图像分割:ResNet-101 也被用于图像分割任务,通过将其与特定的解码器结构结合,可以实现高质量的分割结果。

import torch
import torch.nn as nn

class BasicBlock(nn.Module):
    expansion = 1

    def __init__(self, in_channels, out_channels, stride=1, downsample=None):
        super(BasicBlock, self).__init__()
        self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=stride, padding=1, bias=False)
        self.bn1 = nn.BatchNorm2d(out_channels)
        self.relu = nn.ReLU(inplace=True)
        self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1, bias=False)
        self.bn2 = nn.BatchNorm2d(out_channels)
        self.downsample = downsample
        self.stride = stride

    def forward(self, x):
        identity = x

        if self.downsample is not None:
            identity = self.downsample(x)

        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)
        out = self.conv2(out)
        out = self.bn2(out)

        out += identity
        out = self.relu(out)

        return out

class Bottleneck(nn.Module):
    expansion = 4

    def __init__(self, in_channels, out_channels, stride=1, downsample=None):
        super(Bottleneck, self).__init__()
        self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=1, bias=False)
        self.bn1 = nn.BatchNorm2d(out_channels)
        self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=stride, padding=1, bias=False)
        self.bn2 = nn.BatchNorm2d(out_channels)
        self.conv3 = nn.Conv2d(out_channels, out_channels * self.expansion, kernel_size=1, bias=False)
        self.bn3 = nn.BatchNorm2d(out_channels * self.expansion)
        self.relu = nn.ReLU(inplace=True)
        self.downsample = downsample
        self.stride = stride

    def forward(self, x):
        identity = x

        if self.downsample is not None:
            identity = self.downsample(x)

        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)
        out = self.conv2(out)
        out = self.bn2(out)
        out = self.relu(out)
        out = self.conv3(out)
        out = self.bn3(out)

        out += identity
        out = self.relu(out)

        return out

class ResNet(nn.Module):
    def __init__(self, block, layers, num_classes=1000):
        super(ResNet, self).__init__()
        self.in_channels = 64
        self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False)
        self.bn1 = nn.BatchNorm2d(64)
        self.relu = nn.ReLU(inplace=True)
        self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
        self.layer1 = self._make_layer(block, 64, layers[0])
        self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
        self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
        self.layer4 = self._make_layer(block, 512, layers[3], stride=2)
        self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
        self.fc = nn.Linear(512 * block.expansion, num_classes)

    def _make_layer(self, block, out_channels, blocks, stride=1):
        downsample = None
        if stride != 1 or self.in_channels != out_channels * block.expansion:
            downsample = nn.Sequential(
                nn.Conv2d(self.in_channels, out_channels * block.expansion, kernel_size=1, stride=stride, bias=False),
                nn.BatchNorm2d(out_channels * block.expansion),
            )

        layers = []
        layers.append(block(self.in_channels, out_channels, stride, downsample))
        self.in_channels = out_channels * block.expansion
        for _ in range(1, blocks):
            layers.append(block(self.in_channels, out_channels))

        return nn.Sequential(*layers)

    def forward(self, x):
        x = self.conv1(x)
        x = self.bn1(x)
        x = self.relu(x)
        x = self.maxpool(x)

        x = self.layer1(x)
        x = self.layer2(x)
        x = self.layer3(x)
        x = self.layer4(x)

        x = self.avgpool(x)
        x = torch.flatten(x, 1)
        x = self.fc(x)

        return x

def resnet101(num_classes=1000):
    return ResNet(Bottleneck, [3, 4, 23, 3], num_classes)

# 创建模型
model = resnet101(num_classes=10)  # 修改为你自己的类别数量

# 将模型移动到设备(例如 GPU)
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model.to(device)

print(model)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值