第一章 直流电路
1.1 电路的基本概念
- 支路b:电路中没有分岔的一段电路称为支路
- 没有电源的为无源支路
- 有电源的为有源支路
- 节点n:3条或3条以上支路的连接点称为节点
- 回路l:由若干条支路组成的闭合电路称为回路
- 网孔m:没有被支路穿过的回路称为网孔
- 独立回路il:每定义一个独立回路,之中必须、至少有一条未被使用过的支路,直到所有的支路都被用过为止。
我们有关系 i l = m il=m il=m恒成立, b = i l + n − 1 b=il+n-1 b=il+n−1恒成立
1.2 电阻元件和欧姆定律
- 线性电阻:电阻元件的电压与电流成正比,伏安特性曲线是通过原点的直线
- 非线性电阻:伏安特性曲线是通过原点的曲线
1.3 电压源和电流源
电压源为在任何情况下都能提供确定电压的二端原件(不能短路)
- 断路: U = U s U=U_s U=Us, I = 0 I=0 I=0
- 短路: U = 0 U=0 U=0, I = U s R s I=\frac {U_s}{R_s} I=RsUs
电流源为在任何情况下都能提供确定电流的二端原件(不能断路)
- 断路: U = I s R U=I_sR U=IsR, I = 0 I=0 I=0
- 短路: U = 0 U=0 U=0, I = I s I=I_s I=Is
实际的电源既不是理想的电压源也不是理想的电流源。而是等价于理想电压源与一个电阻串联或理想电流源与一个电阻并联,且这两者可以相互之间转换
1.4 基尔霍夫定律
基尔霍夫电流定律(KCL),即基尔霍夫第一定律(基于电荷守恒和电流连续性原理),描述如下:
电路中的任意节点的电流的代数和恒等于0,即
∑
I
=
0
\sum I=0
∑I=0
记电路中有n个节点,则只能列出(n-1)个KCL方程。
此外基尔霍夫电流定量可以扩展到包围部分电路的闭合面,其基尔霍夫电流定律相当于把闭合面中所有节点的基尔霍夫电流定律相加。
基尔霍夫电压定律(KVL),即基尔霍夫第二定律(基于能量守恒定律),描述如下:
电路中人任意一个闭合回路,各电压的代数和恒等于0,即
∑
U
=
0
\sum U=0
∑U=0
1.5 叠加原理
在线性电路中,多个电源在某一支路产生的电流或电压,等于各个电源单独作用时在该支路产生的电流或电压的代数和。
需要注意的是功率不具有叠加性。
计算某个电源单独作用时的电流或电压,需要使其他电源不作用,具体说就是使其他电压源短路,电流源断路。
1.6 等效电源原理
1.6.1 有源电源的等效变换(对外电路等效,内电路不等效)
对于有内阻的电压源有
U
=
E
−
R
0
I
U=E-R_0I
U=E−R0I
将式子两边同时除以
R
0
R_0
R0有
I
=
E
R
0
−
U
R
0
I=\frac{E}{R_0}-\frac{U}{R_0}
I=R0E−R0U
对比有内阻的电流源有
I
=
I
s
−
1
R
0
U
I=I_s-\frac{1}{R_0} U
I=Is−R01U
即电动势为E,内阻为
R
0
R_0
R0的电压源可以等效为电流为
E
/
R
0
E/R_0
E/R0,内阻为为
R
0
R_0
R0的电流源。
同理电流为
I
s
I_s
Is,内阻为为
R
0
R_0
R0的电流源可以等效为电动势为
I
s
R
0
I_sR_0
IsR0,内阻为
R
0
R_0
R0的电压源
1.6.2 戴维南定理
戴维南定理讨论的是有源二端网络的等效变换。
由线性元件构成的任意有源二端网络都可以等效为一个有阻电压源。其电动势等于有源网络的开路电压,内阻等于网络内的电源均为零(电压源短路,电流源断路)时网络的等效电阻。
实际测量时,可以侧两端开路电压 U 0 U_0 U0,短路电流 I 0 I_0 I0,则等效电压源的电动势 E = U 0 E=U_0 E=U0,内阻 R = U 0 / I 0 R=U_0/I_0 R=U0/I0
1.7 电路分析的一般方法
1.7.1 支路电流法。
具有n个节点,m条支路的一般性电路,按照基尔霍夫定律,共可列出n-1个独立节点方程(KCL),m-n+1个独立回路方程(KVL)。
在平面电路中,独立回路数等于网孔数。
通常取电路的网孔作为独立回路,规定顺时针为回路方向,独立节点可以随意选n-1个。
1.7.2 回路电流法
对n个节点,m个支路的电路,有m-n+1个独立回路,设m-n+1个回路电流,以回路电流为变量,按照KVL列写回路的电压方程组(m-n+1个方程)求解各回路电流,再由回路电流求解支路电流。
其中按KVL列写的方程经过整理之后很有规律。对任一回路,回路方程中本回路电流的系数取正号,其值为该回路的所有电阻之和,称为内阻
,与本回路相关的其他回路电流的系数取负号,其值为两回路公共支路的电阻之和,称为互阻
,
1.7.3 节点电压法
首先选定一个节点为参考点,通常选取连接支路较多的节点为参考点,然后设每个节点电压,然后对于各个非参考节点,按KCL写出节点电流方程。n-1个未知数,n-1个方程。
其中按KCL列写的方程经过整理之后很有规律。对任一节点,节点电压方程中本节点电压的系数取证号,其值等于与该节点相连的所有电导之和,称为自导
。与本节点相关的其他节点电压的系数为负数,其值等于两节点间连接的电导之和,称为互导
第二章 交流电路
2.1 正弦交流的基本概念
变动的电流或电压在任何一个时刻的值叫做它们的瞬时值,瞬时值是时间的函数,一般用小写字母表示,如
i
(
t
)
、
u
(
t
)
i(t)、u(t)
i(t)、u(t),也常简写为
u
、
i
u、i
u、i等。
工程中常见的是随时间按正弦规律变化的正弦交流电,如正弦电流,其解析式可以写为
i
=
I
m
s
i
n
(
ω
t
+
φ
)
i = I_msin(\omega t +\varphi)
i=Imsin(ωt+φ)
式中,
I
m
I_m
Im为正弦的振幅,常称为最大值。
ω
t
+
φ
\omega t+\varphi
ωt+φ是正弦量的辐角
正弦量的最大值、角频率、初相位是决定正弦量的3个基本参数。称为正弦量的三要素。
记电流的有效值为
I
I
I,得功率为:
W
=
I
2
R
T
=
∫
0
T
i
2
R
d
t
=
∫
0
T
I
m
s
i
n
2
(
ω
t
+
φ
)
R
d
t
W=I^2RT=\int_0^T i^2Rdt=\int_0^T I_msin^2(\omega t+\varphi)Rdt
W=I2RT=∫0Ti2Rdt=∫0TImsin2(ωt+φ)Rdt
积分得
I
=
I
m
/
2
I=I_m/\sqrt{2}
I=Im/2
同理得
U
=
U
m
/
2
U=U_m/\sqrt{2}
U=Um/2,
E
=
E
m
/
2
E=E_m/\sqrt{2}
E=Em/2
一般所说的正弦电流或电压都是值有效值,如正常说的日常照明用的交流电压为220V,其为有效值,最大值为220 2 \sqrt{2} 2V=311V。
有时也要考虑最大值,例如一些电容器、半导体管有一定的耐压限制,超过指定电压就会损坏。
2.2 正弦量的相量表示及复数运算
借用物理学中矢量的概念,可以用矢量表示正弦量。例如:
i
1
=
5
2
s
i
n
314
t
A
i
2
=
5
2
s
i
n
(
314
t
+
45
°
)
A
\begin{align*} &i_1=5\sqrt{2}sin314tA\\ &i_2=5\sqrt{2}sin(314t+45\degree) A \end{align*}
i1=52sin314tAi2=52sin(314t+45°)A
其有效值为
I
1
=
I
2
=
5
I_1=I_2=5
I1=I2=5,其有效值相量为
I
˙
1
=
5
∠
0
°
A
,
I
˙
2
=
5
∠
45
°
A
\dot I_1=5∠0\degree A, \dot I_2=5∠45\degree A
I˙1=5∠0°A,I˙2=5∠45°A显然
I
˙
1
≠
I
˙
2
\dot I_1\ne \dot I_2
I˙1=I˙2
对正弦量进行加减运算的时候,可以用三角函数,但是计算过于麻烦,可以按照矢量相加的规则。
由于作图精度的限制,矢量图的计算结果往往不准确,因此可以采用复数运算的方式。
2.3 电阻、电感、电容
电阻 | 电感 | 电容 |
---|---|---|
u=Ri | u=L d i d t \frac{di}{dt} dtdi | i=C d u d t \frac{du}{dt} dtdu |
u与i偏移量相同 | u领先i90 ° \degree ° | i领先u90 ° \degree ° |
U I = R \frac{U}{I}=R IU=R | U I = X L = 2 π f L \frac{U}{I}=X_L=2\pi f L IU=XL=2πfL | U I = X L = 1 2 π f C \frac{U}{I}=X_L=\frac{1}{2\pi f C} IU=XL=2πfC1 |
U ˙ = R I ˙ \dot U=R\dot I U˙=RI˙ | U ˙ = j X L I ˙ \dot U=jX_L\dot I U˙=jXLI˙ | U ˙ = − j X C I ˙ \dot U=-jX_C\dot I U˙=−jXCI˙ |
频率无关 | 频率越大感抗越大 | 频率越大容抗越小 |
通直通交 | 通直不通交 | 通交不通直 |
瞬时功率= U I ( 1 − c o s 2 ω t ) UI(1-cos2\omega t) UI(1−cos2ωt) | 瞬时功率= U I s i n 2 ω t UIsin2\omega t UIsin2ωt | 瞬时功率= U I s i n 2 ω t UIsin2\omega t UIsin2ωt |
平均功率= U I UI UI | 平均功率= 0 0 0 | 平均功率= 0 0 0 |
电阻元件为热效应,电感元件是磁场效应,电容元件是电场效应。但是工程上实际使用的电子元件往往是3中效应并存例如:
- 实际的电感线圈主要特征是磁场效应,但是线圈导线总存在电阻,在线圈 两端加上电压时也会产生电场,即存在电容,但是电阻和电容的值都比较小。
- 理想导线也存在电阻、电容、电感。
2.4 RLC串并联及复阻抗
2.4.1 RLC串联电路与复阻抗
串联电路中各元件的电流相同,则取此电流为参考正弦量,即令:
i
=
I
m
s
i
n
ω
t
i=I_msin\omega t
i=Imsinωt
则有
U
˙
=
U
˙
R
+
U
˙
L
+
U
˙
C
=
R
I
˙
+
j
X
L
I
˙
−
j
X
C
I
˙
=
[
R
+
j
(
X
L
−
X
C
)
]
=
Z
I
˙
\begin{align*} \dot U&=\dot U_R+\dot U_L+\dot U_C=R\dot I+jX_L\dot I-jX_C \dot I\\ &=[R+j(X_L-X_C)]=Z\dot I \end{align*}
U˙=U˙R+U˙L+U˙C=RI˙+jXLI˙−jXCI˙=[R+j(XL−XC)]=ZI˙
其中
Z
=
R
+
j
(
X
L
−
X
C
)
=
R
+
j
X
Z=R+j(X_L-X_C)=R+jX
Z=R+j(XL−XC)=R+jX
复数
Z
Z
Z称为电路的复阻抗,它等于电压相量和电流相量的比值,即
Z
=
U
˙
I
˙
Z=\frac{\dot U}{\dot I}
Z=I˙U˙
复阻抗
Z
Z
Z也可以写成极坐标形式,即
Z
=
∣
Z
∣
∠
φ
=
z
∠
φ
Z=|Z|∠\varphi=z∠\varphi
Z=∣Z∣∠φ=z∠φ
串联的电路的总电压的有效值并不等于电阻、电感和电容电压的有效值之和,其电压三角形和阻抗三角形是相似的。
2.4.2 应用向量法计算正弦交流电路
复阻抗串联的等效复阻抗为
Z
=
Z
1
+
Z
2
Z=Z_1+Z_2
Z=Z1+Z2
复阻抗并联的等效复阻抗为
Z
=
Z
1
Z
2
Z
1
+
Z
2
Z=\frac{Z_1Z_2}{Z_1+Z_2}
Z=Z1+Z2Z1Z2
2.4.3 正弦交流电路的功率
记
U
˙
\dot U
U˙相量与
I
˙
\dot I
I˙相量之间的夹角为
φ
\varphi
φ
则电路的有功功率(单位为瓦W)为
P
=
U
I
c
o
s
φ
P=UIcos\varphi
P=UIcosφ
无功功率(单位为乏var)为
Q
=
U
I
s
i
n
φ
Q=UIsin\varphi
Q=UIsinφ
视在功率(单位为伏安V·A)为
S
=
U
I
S=UI
S=UI
可以理解为将电流分解为两个分量:一个是与电压相同的有功分量,一个是与电压正交的无功分量,有功分量与电压的乘积为有功功率,无功分量与电压乘积为无功功率。
有功功率、无功功率和视在功率之间的关系可以用一个直角三角形来表示,称为功率三角形,类似于阻抗三角形。
功率因数 = P/S。
电力系统的负载大部分都是感性负载,如广泛使用的感应电动机等,其电流滞后于电压,为了提高功率因数可以在线路上并联电容器,利用电容器中超前于电压的电流补偿感性负载中的无功电流分量,从而提高线路的功率因数。
为什么串联一个电容,也可以减少无功功率,但是因为电容分压会导致U<220V
2.5 LC电路中的谐振
2.5.1 串联谐振
当电路参数L、C和外加电源的角频率满足一定条件,恰好使得感抗和容抗相等时(
X
L
=
X
C
X_L=X_C
XL=XC),电路的电抗等于零,这时的电路为纯电阻性电路,阻抗角为零度,电路中的电流和电压同相位。电路的这种状态称为谐振
。
出现串联谐振的条件为:
ω
L
=
1
ω
C
\omega L=\frac {1}{\omega C}
ωL=ωC1
即
ω
0
=
1
L
C
\omega_0 = \frac{1}{\sqrt{LC}}
ω0=LC1
即
f
0
=
1
2
π
L
C
f_0=\frac {1}{2\pi \sqrt{LC}}
f0=2πLC1
我们称
f
0
f_0
f0为电路的谐振频率
此时的感抗或容抗为
ρ
=
ω
0
L
=
1
ω
C
=
L
C
\rho = \omega_0 L=\frac {1}{\omega C}=\sqrt{\frac{L}{C}}
ρ=ω0L=ωC1=CL
我们称
ρ
\rho
ρ为谐振电路的特性阻抗,单位为欧姆
常用谐振电路的特性阻抗与回路电阻的比值说明电路的谐振性能,这个比值一般用
Q
Q
Q表示,即
Q
=
ρ
R
=
ω
L
R
=
1
R
L
C
Q=\frac{\rho}{R}=\frac{\omega L}{R}=\frac{1}{R}\sqrt{\frac{L}{C}}
Q=Rρ=RωL=R1CL
Q
Q
Q值越大,谐振电路对偏离谐振频率的信号衰减的厉害,其选择性更好
串联的谐振电路中电感和电容的电压是电阻的 Q Q Q倍,但是电感超前 90 ° 90\degree 90°,电容滞后 90 ° 90\degree 90°
2.5.2 并联谐振
为什么选择并联谐振而不使用串联谐振,串联谐振当
R
R
R很大的时候
Q
Q
Q很小,选择性小。
并联谐振:总的输出电流与电阻输出电流一样,但是电容和电感的输出电流更大,二者相互抵消
谐振频率大小为
f
0
=
1
2
π
L
C
1
−
C
R
2
L
f_0=\frac{1}{2\pi \sqrt{LC} \sqrt{1-\frac{CR^2}{L}}}
f0=2πLC1−LCR21
2.6 三相电路
世界各国的电力系统基本都是采用三相制供电。
在发电机的定子槽中,放置了三个相同的线圈AX、BY、CZ,彼此相差120度,当转子旋转时,三个线圈分别感应电动势,其频率和有效值相同,但是彼此相差120°。
如果把X、Y、Z端接在一起(标为N)就构成了输电系统的"三相四电制"。
已知
U
A
N
、
U
B
N
、
U
C
N
U_{AN}、U_{BN}、U_{CN}
UAN、UBN、UCN相差120°且大小相等,则
U
A
B
=
U
A
N
−
U
B
N
=
3
U
A
N
∠
30
°
U_{AB}=U_AN-U_BN=\sqrt{3} U_{AN}∠30°
UAB=UAN−UBN=3UAN∠30°
2.7 电路的过渡过程
在换路瞬间,电容上的电压不能突变,电感上的电流不能突变,这就是换路定律
。若记环路时刻为t=0,换路前的最后瞬间为
t
=
0
−
t=0_-
t=0−,换路后的瞬间为
t
=
0
+
t=0_+
t=0+按照换路定律得
{
u
c
(
0
+
)
=
u
c
(
0
−
)
i
L
(
0
+
)
=
i
L
(
0
−
)
\left \{ \begin{align*} &u_c(0_+)=u_c(0_-)\\ &i_L(0_+)=i_L(0_-) \end{align*} \right.
{uc(0+)=uc(0−)iL(0+)=iL(0−)
2.7.1 RC电路
当一个电容并接电阻时(无源),根据KVL得
R
i
=
u
C
Ri=u_C
Ri=uC
又因为
i
=
−
C
d
u
C
d
t
i=-C\frac{du_C}{dt}
i=−CdtduC
可得微分方程为
R
C
d
u
C
d
t
+
u
C
=
0
RC\frac{du_C}{dt}+u_C=0
RCdtduC+uC=0
同解为:
u
C
=
A
e
−
t
R
C
u_C=Ae^{-\frac{t}{RC}}
uC=Ae−RCt
设换路前电压为
U
0
U_0
U0,即
u
C
(
0
−
)
=
A
e
−
t
R
C
∣
t
=
0
=
A
u_C(0_-)=Ae^{-\frac{t}{RC}}|_{t=0}=A
uC(0−)=Ae−RCt∣t=0=A,即
A
=
U
0
A=U_0
A=U0
所以
u
C
=
U
0
e
−
t
R
C
u_C=U_0e^{-\frac{t}{RC}}
uC=U0e−RCt
即电压和电流(等于电压除以电阻)随着时间的增加成指数趋势衰减。
对于过渡过程来说,
R
R
R和
C
C
C的乘积具有重要意义,常用
τ
=
R
C
\tau=RC
τ=RC,其中
τ
\tau
τ称为时间常数,单位为秒(s),一般来说,当经过
3
τ
3\tau
3τ~
5
τ
5\tau
5τ的时间,电压就可以衰减到可以忽略不计的程度。
同理电源给电容充电时有偏微分方程
R
C
d
u
C
d
t
+
u
C
=
U
S
RC\frac{du_C}{dt}+u_C=U_S
RCdtduC+uC=US
求解得通解为
u
C
=
B
+
A
e
−
t
R
C
u_C=B+Ae^{-\frac{t}{RC}}
uC=B+Ae−RCt
因为
u
C
(
0
−
)
=
u
C
(
0
+
)
=
0
u_C(0_-)=u_C(0_+)=0
uC(0−)=uC(0+)=0,且
u
C
(
∞
)
=
U
S
u_C(\infty)=U_S
uC(∞)=US
所以得电压为
u
C
=
U
S
−
U
S
e
−
t
R
C
u_C=U_S-U_S e^{-\frac{t}{RC}}
uC=US−USe−RCt
也是随指数进行增长
2.7.2 电感电路
同理电感与电阻并接时的电流为
i
L
=
I
0
e
−
t
τ
i_L=I_0 e^{-\frac{t}{\tau}}
iL=I0e−τt
与电源相连时的电流为
i
L
=
U
S
R
−
U
S
R
e
−
t
τ
i_L=\frac{U_S}R-\frac{U_S}R e^{-\frac t \tau}
iL=RUS−RUSe−τt
2.7.3 求解一阶电路的三要素法
对于一般的含有储能元件的电路,用
f
(
t
)
f(t)
f(t)表示电路的电压或电流,则其表达式可以直接写为
f
(
t
)
=
f
(
∞
)
+
[
f
(
0
+
)
−
f
(
∞
)
]
e
−
t
τ
f(t)=f(\infty)+[f(0_+)-f(\infty)]e^{-\frac{t}{\tau}}
f(t)=f(∞)+[f(0+)−f(∞)]e−τt