受限玻尔兹曼机(RBN)

受限玻尔兹曼机(Restricted Boltzmann Machine,简称RBM)是一种基于能量的概率图模型,也是深度学习中常用的一种神经网络模型。RBM 由两部分组成:可见层(Visible Layer)和隐藏层(Hidden Layer),层内无连接,层间全连接。以下是RBM的详细介绍:

c85c674fe5f04aa3b78a131327095364.png 

结构

  • 可见层:用于输入数据,每个节点代表数据的一个特征。
  • 隐藏层:用于提取输入数据的特征,每个节点代表学习到的数据特征。
  • 权重:连接可见层和隐藏层的权重,表示两者之间的关联强度。
  • 偏置:可见层和隐藏层各自有一个偏置项,用于调整节点的激活概率。

工作原理

  • 能量函数:RBM定义了一个能量函数,用于衡量可见层和隐藏层配置的能量。能量函数的一般形式为:

    E(v,h)=−∑iaivi−∑jbjhj−∑i,jviwijhjE(v,h)=−i∑​ai​vi​−j∑​bj​hj​−i,j∑​vi​wij​hj​

    其中,vv 和 hh 分别是可见层和隐藏层的状态,aa 和 bb 是偏置,ww 是权重。

     

  • 概率分布:RBM通过能量函数定义了一个概率分布,用于描述可见层和隐藏层状态的联合概率:

    P(v,h)=e−E(v,h)ZP(v,h)=Ze−E(v,h)​

    其中,ZZ 是配分函数,用于归一化概率分布。

     

  • 吉布斯采样:在训练过程中,RBM使用吉布斯采样来更新隐藏层和可见层的状态。这涉及到以下两个步骤:

    1. 给定可见层状态,计算隐藏层节点的激活概率,并基于这个概率随机生成隐藏层状态。
    2. 给定隐藏层状态,计算可见层节点的激活概率,并基于这个概率随机生成可见层状态。
  • 对比散度(Contrastive Divergence,CD):RBM通常使用对比散度算法来近似最大似然学习中的梯度。这是一种快速且有效的训练方法,通过几次吉布斯采样步骤来近似梯度。

特点

  • 无监督学习:RBM是一种无监督学习模型,可以在没有标签数据的情况下学习数据的特征。
  • 特征提取:RBM能够学习到数据的内在特征,这些特征可以用于降维、分类等任务。
  • 易于扩展:RBM可以堆叠成深度信念网络(DBN),用于学习更复杂的特征表示。

应用

  • 降维:RBM可以用于数据的降维,通过学习数据的低维表示来减少特征的数量。
  • 协同过滤:在推荐系统中,RBM可以用于用户和物品的协同过滤,预测用户对物品的偏好。
  • 深度学习:作为深度信念网络的基础,RBM在深度学习中用于预训练,帮助初始化深层网络的权重。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值