题目描述
在一个国家 MM 中,里面全是数字人,它们不分雌雄,且能无限分裂。这个国家的部分子民是国王 kingking 分裂出来的,且每一个子民也会按照如下规则进行分裂:
- 已知 kingking 是国家 MM 的国王。
- 如果 kingking 是国家 MM 的国王 或 子民,那么 2∗king+1和 3∗king+2 都是国家 MM 的子民。
- 除了上述两种情况外的其他数字人,不能成为国家 MM 的子民。
现给定你国王 kingking 和 数字人xx,让你判断数字人xx,是否是这个国家 MM 的子民。
如果是,则输出YES
,否则,输出NO
。
输入
输入一行,包含两个整数 kingking 和 xx,kingking 和 xx 的含义如题面所述。
输出
输出一行,输出YES
或NO
。
样例输入1
3 23
样例输出1
YES
样例输入2
3 20
样例输出2
NO
这个题其实乍一看是不难的,只要用循环反向查出这个数是否属于数字王国就可以,我的第一次做法是这样的:
#include <iostream>
using namespace std;
string people(int king, int x) {
while (x > king) {
if ((x - 1) % 2 == 0) {
x = (x - 1) / 2;
} else if ((x - 2) % 3 == 0) {
x = (x - 2) / 3;
} else {
return "NO";
}
}
return (x == king) ? "YES" : "NO";
}
int main() {
int king, x;
cin >> king >> x;
cout << people(king, x) << endl;
return 0;
}
但是在3,23这个案例里面
23-----(x-1)/2-----11-----(11-1)/2-----5-------(5-1)/2-----2
就不等于3,判断错误。
因为用if循环会导致同时满足两个算式的数字只能在其中一个算式中进行判断
所以进行了改进:
#include <bits/stdc++.h>
using namespace std;
bool people(int king, int x) {
// 当 x 小于 king 时,无法再继续推导
if (x < king) {
return false;
}
// 如果找到了 king,返回 true
if (x == king) {
return true;
}
// 尝试两种反向推导路径
bool check1 = (x - 1) % 2 == 0 && people(king, (x - 1) / 2);
bool check2 = (x - 2) % 3 == 0 && people(king, (x - 2) / 3);
// 只要有一种路径成功,返回 true
return check1 || check2;
}
int main() {
int king, x;
cin >> king >> x;
if (people(king, x)) {
cout << "YES" << endl;
} else {
cout << "NO" << endl;
}
return 0;
}
运用递归,将数字放在两个算式中,在判断是否满足算式的同时,进行下一次的判断,每次判断都放在两个算式里进行判读。
这道题的关键点就是如何及时判断两个条件,还要注意一定是在循环的过程中都进行判读。