AVLTree的模拟实现

1:AVLTree的概念

1:AVL树是最先发明的⾃平衡⼆叉查找树,AVL是⼀颗空树,或者具备下列性质的⼆叉搜索树:它的左右⼦树都是AVL树,且左右⼦树的⾼度差的绝对值不超过1。AVL树是⼀颗⾼度平衡搜索⼆叉树,通过控制⾼度差去控制平衡。

2: AVL树得名于它的发明者G.M.Adelson - Velsky和E.M.Landis是两个前苏联的科学家,他们在1962年的论⽂《An algorithm for the organization of information》中发表了它。

3:AVL树实现这⾥我们引⼊⼀个平衡因⼦(balance factor)的概念,每个结点都有⼀个平衡因⼦,任何结点的平衡因⼦等于右⼦树的⾼度减去左⼦树的⾼度,也就是说任何结点的平衡因⼦等于0 / 1 / -1,AVL树并不是必须要平衡因⼦,但是有了平衡因⼦可以更⽅便我们去进⾏观察和控制树是否平衡,就像⼀个风向标⼀样。

4:思考⼀下为什么AVL树是⾼度平衡搜索⼆叉树,要求⾼度差不超过1,⽽不是⾼度差是0呢?0不是更好的平衡吗?画画图分析我们发现,不是不想这样设计,⽽是有些情况是做不到⾼度差是0的。⽐如⼀棵树是2个结点,4个结点等情况下,⾼度差最好就是1,⽆法做到⾼度差是0

5:AVL树整体结点数量和分布和完全⼆叉树类似,⾼度可以控制在 ,那么增删查改的效率也可以控制在 ,相⽐⼆叉搜索树有了本质的提升

2:AVLTree的实现

1:AVLTree的节点

template<class T>
struct AVLTreeNode {
	AVLTreeNode(const T& data = T()) :_pLeft(nullptr), _pRight(nullptr), _pParent(nullptr), _data(data), _bf(0){}
	//结构体成员
	AVLTreeNode<T>* _pLeft;
	AVLTreeNode<T>* _pRight;
	AVLTreeNode<T>* _pParent;
	T _data;
	int _bf;//节点的平衡因子
};
template<class T>
class AVLTree 
{
	typedef AVLTreeNode<T> Node;
public:
	AVLTree():_pRoot(nullptr){}
    //.................
private:
	Node* _pRoot;
};

2:AVLTree的插入

1:插入的大概过程

1. 插⼊⼀个值按⼆叉搜索树规则进⾏插⼊。

2. 新增结点以后,只会影响祖先结点的⾼度,也就是可能会影响部分祖先结点的平衡因⼦,所以更新从新增结点->根结点路径上的平衡因⼦,实际中最坏情况下要更新到根,有些情况更新到中间就可以停⽌了,具体情况我们下⾯再详细分析。

3. 更新平衡因⼦过程中没有出现问题,则插⼊结束

4. 更新平衡因⼦过程中出现不平衡,对不平衡⼦树旋转,旋转后本质调平衡的同时,本质降低了⼦树的⾼度,不会再影响上⼀层,所以插⼊结束。

2:平衡因子的更新

更新原则:

• 平衡因⼦ = 右⼦树⾼度 - 左⼦树⾼度

• 只有⼦树⾼度变化才会影响当前结点平衡因⼦。

• 插⼊结点,会增加⾼度,所以新增结点在parent的右⼦树,parent的平衡因⼦++,新增结点在parent的左⼦树,parent平衡因⼦--

• parent所在⼦树的⾼度是否变化决定了是否会继续往上更新

更新停⽌条件:

• 更新后parent的平衡因⼦等于0,更新中parent的平衡因⼦变化为 - 1->0 或者 1->0,说明更新前parent⼦树⼀边⾼⼀边低,新增的结点插⼊在低的那边,插⼊后parent所在的⼦树⾼度不变,不会影响parent的⽗亲结点的平衡因⼦,更新结束。

• 更新后parent的平衡因⼦等于1 或 - 1,更新前更新中parent的平衡因⼦变化为0->1 或者 0-> - 1,说明更新前parent⼦树两边⼀样⾼,新增的插⼊结点后,parent所在的⼦树⼀边⾼⼀边低,parent所在的⼦树符合平衡要求,但是⾼度增加了1,会影响parent的⽗亲结点的平衡因⼦,所以要继续向上更新。

• 更新后parent的平衡因⼦等于2 或 - 2,更新前更新中parent的平衡因⼦变化为1->2 或者 - 1-> - 2,说明更新前parent⼦树⼀边⾼⼀边低,新增的插⼊结点在⾼的那边,parent所在的⼦树⾼的那边更⾼了,破坏了平衡,parent所在的⼦树不符合平衡要求,需要旋转处理,旋转的⽬标有两个:1、把parent⼦树旋转平衡。2、降低parent⼦树的⾼度,恢复到插⼊结点以前的⾼度。所以旋转后也不需要继续往上更新,插⼊结束。

• 不断更新,更新到根,跟的平衡因⼦是1或 - 1也停⽌了

3:更新平衡因子的代码实现
bool Insert(const T& data)
{
	if (_pRoot == nullptr)
	{
		_pRoot = new Node(data);
		return true;
	}

	Node* parent = nullptr;
	Node* cur = _pRoot;
	while (cur)
	{
		parent = cur;
		if (cur->_data < data)
		{				
			cur = cur->_pRight;
		}
		else if (cur->_data > data)
		{
			cur = cur->_pLeft;
		}
		else
		{
			return false;
		}
	}

	cur = new Node(data);
	if (parent->_data < data)
	{
		parent->_pRight = cur;
	}
	else
	{
		parent->_pLeft = cur;
	}
	cur->_pParent = parent;
    //更新平衡因子
	while (parent)
	{
		if (cur == parent->_pLeft)
		{
			parent->_bf--;
		}
		else
		{
			parent->_bf++;
		}
		if (parent->_bf == 0)
		{
			break;
		}
		else if (parent->_bf == 1 || parent->_bf == -1)
		{
			cur = parent;
			parent = parent->_pParent;
		}
		else if (parent->_bf == 2 || parent->_bf == -2)
		{
			if (parent->_bf == -2 && cur->_bf == -1)
			{
				RR(parent);
			}
			else if (parent->_bf == 2 && cur->_bf == 1)
			{
				RL(parent);
			}
			else if (parent->_bf == -2 && cur->_bf == 1)
			{
				RLR(parent);
			}
			else if (parent->_bf == 2 && cur->_bf == -1)
			{
				RRL(parent);
			}
			break;
		}
		else
		{
			assert(false);
		}
	}
}

3:AVLTree的旋转

1:旋转的原则

1. 保持搜索树的规则
2. 让旋转的树从不满⾜变平衡,其次降低旋转树的⾼度旋转总共分为四种,左单旋 / 右单旋 / 左右双旋 / 右左双旋。

说明:下⾯的图中,有些结点我们给的是具体值,如10和5等结点,这⾥是为了⽅便讲解,实际中是什么值都可以,只要⼤⼩关系符合搜索树的性质即可。

2:右单旋

//右单旋
void RR(Node* pParent)
{
	Node* subL = pParent->_pLeft;
	Node* subLR = subL->_pRight;
	pParent->_pLeft = subLR;
	if (subLR != nullptr)
	{
		subLR->_pParent = pParent;
	}

	subL->_pRight = pParent;
	Node* ppnode = pParent->_pParent;
	pParent->_pParent = subL;
	subL->_pParent = ppnode;
	if (ppnode == nullptr)
	{
		_pRoot = subL;
	}
	else
	{
		if (ppnode->_pLeft == pParent)
		{
			ppnode->_pLeft = subL;
		}
		else
		{
			ppnode->_pRight = subL;
		}
	}
	subL->_bf = pParent->_bf = 0;
}

3:左单旋

//左单旋
void RL(Node* pParent)
{
	Node* subR = pParent->_pRight;
	Node* subRL = subR->_pLeft;
	pParent->_pRight = subRL;
	if (subRL!=nullptr)
	{
		subRL->_pParent = pParent;
	}
	subR->_pLeft = pParent;
	Node* ppnode = pParent->_pParent;
	pParent->_pParent = subR;
	subR->_pParent = ppnode;
	if (ppnode == nullptr)
	{
		_pRoot = subR;
	}
	else
	{
		if (ppnode->_pLeft == pParent)
		{
			ppnode->_pLeft = subR;
		}
		else
		{
			ppnode->_pRight = subR;
		}
	}
	pParent->_bf = subR->_bf = 0;
}

4:右左双旋

//右左双旋转
void RRL(Node* pParent)
{
	Node* subR = pParent->_pRight;
	Node* subRL = subR->_pLeft;
	int bf = subRL->_bf;
	RR(subR);
	RL(pParent);
	if (bf == -1)
	{
		pParent->_bf = 0;
		subR->_bf = 1;
		subRL->_bf = 0;
	}
	else if (bf == 1)
	{
		pParent->_bf = -1;
		subR->_bf = 0;
		subRL->_bf = 0;
	}
	else if (bf == 0)
	{
		pParent->_bf = 0;
		subR->_bf = 0;
		subRL->_bf = 0;
	}
	else
	{
		assert(false);
	}
}

5:左右双旋

//左右双旋转
void RLR(Node* pParent)
{
	Node* subL = pParent->_pLeft;
	Node* subLR = subL->_pRight;
	int bf = subLR->_bf;

	RL(subL);
	RR(pParent);

	if (bf == 1)
	{
		pParent->_bf = 0;
		subL->_bf = -1;
		subLR->_bf = 0;
	}
	else if (bf == -1)
	{
		pParent->_bf = 1;
		subL->_bf = 0;
		subLR->_bf = 0;
	}
	else if (bf == 0)
	{
		pParent->_bf = 0;
		subL->_bf = 0;
		subLR->_bf = 0;
	}
	else
	{
		assert(false);
	}
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值