数值微分
插值型求导公式
f ( n ) ( x ) = P n ( n ) ( x ) + ( f ( n + 1 ) ( ξ ) ( n + 1 ) ! ∏ i = 0 n + 1 ( x − x i ) ) n f^{(n)}(x)=P^{(n)}_{n}(x)+\left(\frac{f^{(n+1)}(\xi)}{(n+1)!}\prod_{i=0}^{n+1}(x-x_i)\right)^{n} f(n)(x)=Pn(n)(x)+((n+1)!f(n+1)(ξ)i=0∏n+1(x−xi))n
三点公式
取 x = x 0 + t h , t = 0 , 1 , 2 x=x_0+th,t=0,1,2 x=x0+th,t=0,1,2,得到二次插值:
P 2 ( x 0 + t h ) = 1 2 ( t − 1 ) ( t − 2 ) f ( x 0 ) − t ( t − 2 ) f ( x 1 ) + 1 2 t ( t − 1 ) f ( x 2 ) P_{2}(x_0+th)=\frac{1}{2}(t-1)(t-2)f(x_0)-t(t-2)f(x_1)+\frac{1}{2}t(t-1)f(x_2) P2(x0+th)=21(t−1)(t−2)f(x0)−t(t−2)f(x1)+21t(t−1)f(x2)
对 t t t求导:
P 2 ′ ( x 0 + t h ) = 1 2 h [ ( 2 t − 3 ) f ( x 0 ) − ( 4 t − 4 ) f ( x 1 ) + ( 2 t − 1 ) f ( x 2 ) ] P^{\prime}_{2}(x_0+th)=\frac{1}{2h}[(2t-3)f(x_0)-(4t-4)f(x_1)+(2t-1)f(x_2)] P2′(x0+th)=2h1[(2t−3)f(x0)−(4t−4)f(x1)+(2t−1)f(x2)]
再次对
t
t
t求导:
P
2
′
′
(
x
0
+
t
h
)
=
1
h
2
[
f
(
x
0
)
−
2
f
(
x
1
)
+
f
(
x
2
)
]
P^{\prime\prime}_{2}(x_0+th)=\frac{1}{h^2}[f(x_0)-2f(x_1)+f(x_2)]
P2′′(x0+th)=h21[f(x0)−2f(x1)+f(x2)]
插商表求导数
f ( k ) ( x ) = k ! P n [ x , x , … , x ⏟ k + 1 个 ] \boxed{f^{(k)}(x) = k! \, P_{n} [ \underbrace{x, x, \ldots, x}_{k+1 \text{ 个}}]} f(k)(x)=k!Pn[k+1 个 x,x,…,x]
例
解
我们使用二次函数近似,容易得到差商:
P 2 [ 4 , 3 , 3 ] = P 2 [ 3 , 3 , 3 ] = 5 2 P_2[4,3,3]=P_2[3,3,3]=\frac{5}{2} P2[4,3,3]=P2[3,3,3]=25
P 2 [ 4 , 3 , 3 ] = P 2 [ 3 , 3 ] − 7 3 − 4 = 5 2 P_2[4,3,3]=\frac{P_2[3,3]-7}{3-4}=\frac{5}{2} P2[4,3,3]=3−4P2[3,3]−7=25
即可得到导数值。