数值微分速成

数值微分

插值型求导公式

f ( n ) ( x ) = P n ( n ) ( x ) + ( f ( n + 1 ) ( ξ ) ( n + 1 ) ! ∏ i = 0 n + 1 ( x − x i ) ) n f^{(n)}(x)=P^{(n)}_{n}(x)+\left(\frac{f^{(n+1)}(\xi)}{(n+1)!}\prod_{i=0}^{n+1}(x-x_i)\right)^{n} f(n)(x)=Pn(n)(x)+((n+1)!f(n+1)(ξ)i=0n+1(xxi))n

三点公式

x = x 0 + t h , t = 0 , 1 , 2 x=x_0+th,t=0,1,2 x=x0+th,t=0,1,2,得到二次插值:

P 2 ( x 0 + t h ) = 1 2 ( t − 1 ) ( t − 2 ) f ( x 0 ) − t ( t − 2 ) f ( x 1 ) + 1 2 t ( t − 1 ) f ( x 2 ) P_{2}(x_0+th)=\frac{1}{2}(t-1)(t-2)f(x_0)-t(t-2)f(x_1)+\frac{1}{2}t(t-1)f(x_2) P2(x0+th)=21(t1)(t2)f(x0)t(t2)f(x1)+21t(t1)f(x2)

t t t求导:

P 2 ′ ( x 0 + t h ) = 1 2 h [ ( 2 t − 3 ) f ( x 0 ) − ( 4 t − 4 ) f ( x 1 ) + ( 2 t − 1 ) f ( x 2 ) ] P^{\prime}_{2}(x_0+th)=\frac{1}{2h}[(2t-3)f(x_0)-(4t-4)f(x_1)+(2t-1)f(x_2)] P2(x0+th)=2h1[(2t3)f(x0)4t4f(x1)+(2t1)f(x2)]

再次对 t t t求导:
P 2 ′ ′ ( x 0 + t h ) = 1 h 2 [ f ( x 0 ) − 2 f ( x 1 ) + f ( x 2 ) ] P^{\prime\prime}_{2}(x_0+th)=\frac{1}{h^2}[f(x_0)-2f(x_1)+f(x_2)] P2′′(x0+th)=h21[f(x0)2f(x1)+f(x2)]

插商表求导数

f ( k ) ( x ) = k !   P n [ x , x , … , x ⏟ k + 1  个 ] \boxed{f^{(k)}(x) = k! \, P_{n} [ \underbrace{x, x, \ldots, x}_{k+1 \text{ 个}}]} f(k)(x)=k!Pn[k+1  x,x,,x]

在这里插入图片描述

我们使用二次函数近似,容易得到差商:

P 2 [ 4 , 3 , 3 ] = P 2 [ 3 , 3 , 3 ] = 5 2 P_2[4,3,3]=P_2[3,3,3]=\frac{5}{2} P2[4,3,3]=P2[3,3,3]=25

P 2 [ 4 , 3 , 3 ] = P 2 [ 3 , 3 ] − 7 3 − 4 = 5 2 P_2[4,3,3]=\frac{P_2[3,3]-7}{3-4}=\frac{5}{2} P2[4,3,3]=34P2[3,3]7=25

即可得到导数值。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值