洛谷 P2866 [USACO06NOV] Bad Hair Day S

题目描述

农夫约翰有 N 头奶牛正在过乱头发节。

每一头牛都站在同一排面朝右,它们被从左到右依次编号为 1,2,⋯,N。编号为 i 的牛身高为 hi​。第 N 头牛在最前面,而第 1 头牛在最后面。

对于第 i 头牛前面的第 j 头牛,如果 hi​>hi+1​,hi​>hi+2​,⋯,hi​>hj​,那么认为第 i 头牛可以看到第 i+1 到第 j 头牛。

定义 Ci​ 为第 i 头牛所能看到的牛的数量。请帮助农夫约翰求出 C1​+C2​+⋯+CN​。

输入格式

输入共 N+1 行。

第一行为一个整数 N,代表牛的个数。
接下来 N 行,每行一个整数 ai​,分别代表第 1,2,⋯,N 头牛的身高。

输出格式

输出共一行一个整数,代表 C1​+C2​+⋯+CN​。

//想要找出一头牛可以看见那几头牛比较困难, 我们可以用单调栈来控制当前这头牛可以被几头牛看见  栈中的元素就是可以看见当前牛的个数  只需维护一个单调栈就可以找出所有可以看见当前牛的数量 如果当前牛小于栈顶元素就让他加入栈  否则就计算出当前牛可以被几头牛看见

#include<bits/stdc++.h>
using namespace std;
typedef long long LL;
int n,t;
LL ans;
stack <int> a;
int main() {
    cin>>n;
    for (int i=1; i<=n; i++) {
        cin>>t;
        while (!a.empty() && a.top() <= t) a.pop(); //如果当前牛的身高高于栈顶元素 就让栈中的牛出栈
        ans+=a.size();//计算当前牛可以被几头牛看见
        a.push(t);//入栈
    }
    cout<<ans;
    return 0;
}

题目描述 农夫约翰一直在观察他的奶牛们。他注意到,如果在牛群中有太多的牛靠得太近,就会导致不健康的行为和情感问题。 约翰想知道他的牛群是否存在这个问题。他定义这个问题为:在一个固定长度的路段上,如果有两头高度大于等于 $y$ 的奶牛之间的距离小于 $x$,则牛群中就存在一个挤得太近的情况。 约翰有 $N$ 头牛 ($1 \leq N \leq 50,000$),每头牛的高度为 $h_i$ ($1 \leq h_i \leq 1,000,000$)。他想知道是否存在一对牛,使得它们之间的距离小于 $x$,且它们的高度都大于等于 $y$。 输入格式 第一行包含三个整数 $N, L, R$,分别表示牛的数量,路段长度,和问题的最大高度。 接下来 $N$ 行,每行一个整数 $h_i$,表示每头牛的高度。 输出格式 如果存在一对牛,它们之间的距离小于 $x$,且它们的高度都大于等于 $y$,则输出 $1$,否则输出 $0$。 输入样例1 4 6 4 4 4 5 7 输出样例1 1 输入样例2 5 3 3 1 5 5 5 5 输出样例2 0 提示 对于 $30\%$ 的数据,$N \leq 500$。 对于 $100\%$ 的数据,$1 \leq N \leq 50,000$,$1 \leq L \leq 1,000,000$,且 $L \leq R$。 数据范围 时间限制:1.0s,空间限制:256MB 算法1 (暴力枚举) $O(n^2)$ 首先对输入的牛的高度进行排序,之后枚举每头牛,再枚举它后面的每头牛,如果两头牛的高度均大于等于 $y$,且它们之间的距离小于 $x$,则输出 $1$。如果最后仍然没有满足条件的牛,则输出 $0$。 时间复杂度 暴力枚举,时间复杂度为 $O(n^2)$,无法通过此题。 算法2 (滑动窗口) $O(n \log n)$ 为了方便后续操作,我们将所有的牛按照它们的高度从小到大排序。之后,我们维护一个长度为 $L$ 的滑动窗口,它的右端点与左端点之间的距离小于 $x$。我们从左到右扫描每头牛,将它加入滑动窗口的左端点,同时将滑动窗口右移,直到滑动窗口的右端点与左端点之间的距离小于 $x$。 在处理完一头牛之后,我们需要判断滑动窗口中是否存在一对牛,它们的高度均大于等于 $y$,且它们之间的距离小于 $x$。我们可以用双指针来实现这个操作。我们从滑动窗口的左端点开始,向右移动一个指针 $i$,同时向右移动一个指针 $j$,直到 $h_j - h_i \leq x$。在这个过程中,我们需要判断 $h_i$ 和 $h_j$ 是否均大于等于 $y$。如果存在一对牛满足条件,则输出 $1$。如果最后仍然没有满足条件的牛,则输出 $0$。 时间复杂度 因为需要对所有的牛进行排序,所以时间复杂度为 $O(n \log n)$。 C++ 代码 算法3 (暴力优化) $O(n \log n)$ 首先对输入的牛的高度进行排序,之后枚举每头牛。如果当前牛的高度小于 $y$,则跳过这头牛。否则,我们从它的左边和右边各扩展出一个长度为 $x$ 的区间。如果这两个区间内的牛的数量均大于等于 $2$,且这两个区间中任意两头牛的高度均大于等于 $y$,则输出 $1$。 时间复杂度 因为需要对所有的牛进行排序,所以时间复杂度为 $O(n \log n)$。 C++ 代码
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值