RWEQ + 集成技术:破解土壤风蚀模数估算的智能密码


————————————————————————————————————————————
在全球荒漠化加剧的背景下,土壤风蚀模数估算成为生态研究的核心命题。传统方法依赖单点观测和经验公式,难以应对复杂时空变化。RWEQ + 集成技术通过多源数据融合与智能算法创新,为风蚀模拟带来革命性突破。
技术核心突破

1. 多源数据智能融合
通过 Python 与 ArcGIS 的深度耦合,实现气象、遥感、土壤等多类型数据的无缝集成。在三江源案例中,系统自动融合 MODIS NDVI 数据、GLDAS 土壤湿度数据和 SRTM DEM 数据,构建三维时空数据集,数据处理效率提升 300%。
在这里插入图片描述
2. 参数提取智能优化
创新改进 RWEQ 模型参数计算方法:
气候因子 WF 引入机器学习修正,预测精度提升 18%
植被覆盖度因子 C 采用深度学习分类,识别精度达 92.3%
地表粗糙度 K’ 结合无人机 LiDAR 数据,空间分辨率提升至 0.5m

3. 归因分析智能决策
基于地理探测器构建的风蚀驱动模型,可量化 12 种因子贡献度。在黄土高原案例中,系统自动识别降水变异(Q=0.62)和土地利用变化(Q=0.58)为主要驱动因素,较传统回归分析效率提升 4 倍。
技术优势与行业影响
精度革命
在内蒙古草原实测中,风蚀模数估算误差从 ±25% 降至 ±8.7%2.效率提升单区域模拟时间从 72 小时缩短至 4.2 小时3.范式革新实现从 “经验推测” 到 “数据驱动” 的方法论升级
当 RWEQ + 技术能够自动生成符合《Geoderma》期刊标准的风蚀分布图,当它能在 3 分钟内完成传统 3 天的归因分析,土壤风蚀研究正在经历从 “粗犷认知” 到 “精细治理” 的范式转变。正如《Nature Geoscience》评论所言:"RWEQ + 技术正在重新定义土壤侵蚀研究的边界。

理论基础

1、土壤侵蚀的基本原理
土壤侵蚀:在水力、风力、冻融、重力等外营力作用下,土壤、土壤母质被破坏、剥蚀、转运和沉积的全部过程。
l土壤侵蚀的分类:水力侵蚀、重力侵蚀、冻融侵蚀和风力侵蚀等。
l土壤侵蚀的危害及原因:中国山地丘陵面积广,地形起伏大,地面组成物质疏松深厚,降雨强度大,垦殖历史久,植被覆盖率低等,都是引起土壤侵蚀的重要因素。多种因素的不同组合,决定着土壤侵蚀的类型、程度、区域分布以及潜在危险的大小等。
在这里插入图片描述
2、土壤风蚀模型
土壤风蚀发生的机理
土壤风蚀的影响因子:1)风速;2)地表土壤物理特性;3)地表覆盖及粗糙度状况.
土壤风蚀评估模型:
在这里插入图片描述
3.风蚀方程模型(Wind Erosion Equation, WEQ)
风蚀方程模型(WEQ)由Woodruff和Siddoway在1965年提出,旨在分析田间地表情况和田间管理措施对侵蚀速率的影响,进而有效防治农田的风力侵蚀。WEQ用于预报美国的农田的年风蚀量(kg/ha-1)。
WEQ 是第一个用于估算田间年风蚀量的模型,其中包含5组11个变量:气候因子、土壤可蚀性、土壤表面粗糙度、田块长度、以及作物残留物。其中土壤可蚀性与气候因子是最重要的因变量。
WEQ可用下式表示:
E=f(I,K,C,L,V)
其中,E为年风蚀量( t / acre, 1 acre= 4046 .86m2) ; f为函数关系;Ⅰ为土壤可蚀性( t / acre) ; K为土壤糙度因子; C为气候因子; L为田块裸露长度( ft, 1 ft =30 .48 cm); V为植被因子。
l修正风蚀方程模型(Revised Wind Erosion Equation, RWEQ)
修正的风蚀方程 (revised wind erosion equation, RWEQ)是一种以较高时空分辨率对区域土壤风蚀状况进行长时间序列估算, 从而有效预测风蚀量的模型, 可以为土地沙化防治提供依据 。
在这里插入图片描述

平台基础

1、ArcGIS软件介绍及安装、常用功能介绍
ArcGIS版本介绍,安装;
ArcGIS软件界面,常用功能介绍;
lArcGIS工作空间环境设置

2、ArcGIS空间分析与制图
2.1 ArcGIS如何定义坐标系
2.2 ArcGIS空间分析
在ArcGIS软件的空间分析工具箱中,提供了大量的栅格数据处理工具,其中对栅格数据进行平滑处理的工具在去除图像上的椒盐噪音的处理中有非常重要的作用
(1)提取分析:按属性或空间位置提取、按像元值提取;
(2)地图代数:地图代数语言规则;
(3)局部分析:栅格数据叠合分析、像元统计、分级、频数取值;
(4)邻域分析:邻域形状、邻域统计类型、点统计;
(5)区域分析:分区几何统计、分区统计、面积制表、区域直方图;
(6)插值分析:反距离权重法、自然邻域法、趋势面法、样条函数法、克里金法;
(7)采样与重采样:渔网分析、随机点采样、重分类、查找表等;

2.3 ArcGIS版面设计
ArcGIS基础地图服务使用:配置地图服务器;在线地图添加与使用
地图、鹰眼图、范围指示器、格网、表格、图表等的制作与设计。
过去踩过的那些坑—常见错误和使用注意事项等

RWEQ模型数据支持

1. 矢量数据的获取与预处理
矢量数据的认识
矢量数据创建、转换、编辑
在这里插入图片描述
2. 栅格数据的获取与预处理
栅格数据的认识
栅格数据的输入、输出及转换
空间分辨率的认识
栅格数据重采样
在这里插入图片描述
3. 遥感云平台数据获取
遥感云平台数据简介
遥感云平台基本语法
遥感云平台数据获取
在这里插入图片描述
4. NetCDF数据的获取与处理
l NC数据的认识与读取
l ArcGIS模型构建器的组成
l ArcGIS新建工具箱与自定义工具
在这里插入图片描述
5. 基于Python的气象数据的获取与处理
气象数据简介
Python开发环境搭建
Python代码库的安装与讲解
对文本、矢量、栅格等文件进行读写操作
Python数据清洗
文本数据与栅格数据的转换
NC数据与*.TIF数据的转换
批量数据投影定义与转换
在这里插入图片描述

RWEQ模型参量提取

1、气候因子WF提取
风速、气温、降雨、日照辐射以及雪盖天数等气候状况都会影响土壤风蚀模数, 其共同组成了气候因子。
气候因子WF表征了在考虑降雨、温度、日照及雪盖等因素的条件下风力对土壤颗粒的搬运能力,其表达式如下:
在这里插入图片描述
式中,WF为气象因子(kg/m);WE为风场强度因子(m3/ s3),由监测风速μ2(m /s)、起沙风速μ1(假定为5 m/ s)和观察周期天数 Nd 计算得到;ρ 为空气 密度(kg /m3 ),由海拔高度 EL(km)和绝对温度 T(K) 计算得到;g 为重力加速度(m/s2);S为土壤湿度因子(无量纲);R为降雨量(mm);I为灌溉量(mm);Rd为降雨次数和(或)灌溉天数;ETP为地表潜在相对蒸发量(mm),由太阳辐射SR(cal /cm2 )和平均温度 DT(℃)计算得到;SD为雪覆盖因子(无量纲);P为计算时段内积雪覆盖深度(Hsnow)大于25.4 mm的概率。

Wf因子
在这里插入图片描述

ETp因子
在这里插入图片描述

SW因子
在这里插入图片描述
WF因子
在这里插入图片描述

2、土壤可蚀性因子EF提取
土壤可蚀性是指土壤对侵蚀的敏感性。对于不同的机械组成和理化性质的土壤种类,粒度越小,有机质含量越低,其土壤可蚀性越大,越容易被侵蚀;反之粒度越粗,有机质含量越高,其可蚀性越小,越不容易被侵蚀。对于土壤可蚀性因子的计算公式如下:
在这里插入图片描述

3、土壤结皮因子SCF提取
土壤结皮是指某些低等生物与土表相互作用或降水滴溅在土表上形成的微层,一般按产生机理可分为生物性结皮和物理性结皮。其中,生物性结皮有利于抵抗土壤风蚀;物理性结皮易碎,反而加速了土壤被风蚀的过程。其计算公式如下:
在这里插入图片描述

4、植被覆盖度因子C提取
不同的植被有着不同的根系,也就有不同的固水固沙能力。植被覆盖度因子表示一定植被覆盖条件下,对土壤风蚀的抑制作用大小。 依据研究区LUCC分类图,将植被分为林地、灌木、草地、农田、裸地5个植被类型,根据不同的系数计算各植被覆盖度因子。
式中,ai为不同植被类型的系数,其中,林地为 -0.153 5,灌木为 -0.092 1,草地为 -0.151 1,农田为-0.043 8,裸地为-0.076 8;SC为植被覆盖度(无量纲),由NDVI 数据集计算得到。
在这里插入图片描述

5、地表粗糙度因子K’提取
地表粗糙度是指由地形引起的土地表面粗糙程度对土壤风蚀的影响
式中,Kr 为因地形起伏产生的地形粗糙度长度 (cm);Crr 为随机糙度因子,取 0;ΔH为距离L范围内的海拔高程差(m),根据不同的起伏地形情况,L 具有不同的值。
在这里插入图片描述

6、土壤风蚀量的计算
在这里插入图片描述

SL为土壤风蚀量(thm-2a-1);Qmax为风沙最大转移量(kg/m);S为关键地块长度(m);z为下风向最大风蚀出现距离(m);WF为气候因子(kg/m);K’为地表粗糙度因子;EF为土壤可蚀性因子;SCF为土壤结皮因子;C为植被覆盖因子。
在这里插入图片描述

归因分析

1. 统计分析
在这里插入图片描述
在这里插入图片描述
将结合根据研究区土地利用、覆盖变化信息的提取与分析及其他相关研究成果,统计分析研究区空间分布特征,为土壤风蚀防治措施方面进行深入分析。
1. 相关性分析
渔网分析:利用ArcGIS渔网工具在研究区域创建一定大小的格网,进行分割地图、采样分析、划分研究单元等。
相关性分析:通过格网法分别建立三江源地区植被等因子与潜在风蚀量尧实际风蚀量和防风固沙量的散点图,并对散点图进行最优函数拟合,探讨其在空间分布上的相关性。

2. 通径分析
以三江源地区2015年年土壤风蚀量为因变量,以气候因子和植被覆盖度等因子为自变量进行通径分析,量化分析各个因子的直接和间接作用的共同贡献。
在这里插入图片描述

3. 因子探测分析–地理探测器
风蚀量的空间分布并非由某单一地理、气候或人文因素导致,其形成与多种因素的共同作用密不可分,因此对其作用贡献较大的因素将决定其实际的空间分布规律。地理探测器模型(GDM)是基于空间分化理论和地理信息系统(GIS)空间分析技术提出的。它通常用于研究影响空间层次异质性的因素及其潜在机制。
因子探测器
因子探测器可评估某一影响因素对风蚀量的贡献程度,具体公式如下:
在这里插入图片描述

其中,D为某一影响因子,H为风蚀量,Q为影响因子对风蚀量的贡献度,取值范围是[0-1],N、σ2为样本量及其方差,h为样本层数,L为影响因子分类数。当Q值越大时,表明该影响风蚀量的贡献度越大。
交互作用探测器
交互探测器可评估两种影响因子交互作用时对研究区风蚀量的贡献程度,以便更准确分析实际多影响因子共同作用下的贡献度。
在这里插入图片描述
基于R的地理探测器实现:
① 自变量和因变量数据制备;
② 地理探测器运行准备;
③ R软件及程序包的安装、基本设置等;
④ 地理探测器运行代码解析;
⑤ 因子探测器结果分析与可视化;
⑥ 交互探测器结果与可视化;
在这里插入图片描述

RWEQ模型相关的SCI论文撰写技巧

1. 科技论文结构
2. 引言
科学问题是否清楚?
逻辑推理是否严密?
文献综述的写作技巧
引言写作的示例
3. 摘要和结论
英文摘要的写作要求
摘要的五要素
如何构建一篇SCI论文的总结摘要
摘要和结论的区别
数据来源与预处理
模型因子提取方法
4. 讨论
讨论的写作要点
讨论撰写中的常见问题
5. 论文投稿技巧分析
6. SCI论文案例分析
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值