[等级保护2.0] 1.1 等级保护的概念&实施步骤

等级保护是指主体公司对其重要信息化资产按照重要性进行分级安全管理,并通过第三方机构测评获取等级保护合规认证。

1. 等级保护的作用(公司为什么做等级保护

        保护资产:保障公司信息资产,尤其是业务资产的 保密性、完整性和可用性

        法律要求:得到等保认证证书,符合国家法规对关键信息基础设施的要求。

        业务价值:降低公司信息安全风险,增强客户和合作伙伴信任。

2. 等级保护的实施步骤

        step1. 资产识别与分类(业务方):明确需要保护的信息资产及其业务重要性。

        step2. 安全等级划分(测评方):根据GB/T22239 & 28448及相关法规确定安全等级。

                根据资产的重要性划分安全等级,分为五个等级:

                第一级:信息系统受破坏对公司基本无影响。

                第二级:影响公司业务,但不会导致重大损失。

                第三级:对社会秩序或经济利益产生较大影响。

                第四级:可能危害国家安全或社会稳定。

                第五级:对国家安全或重要基础设施构成极大威胁。

        step3. 初次测评(测评方):测评机构进行初测并给出《差异评分表》&《整改建议》。

        step4. 技术防护与管理(业务方):根据整改建议对资产进行技术和管理防护措施。

                技术:身份认证、加密通信、边界防护等。

                管理:权限分配、安全审计、应急预案等。

        step5. 二次测评(测评方):测评机构进行二次测评。

        step6. 审核备案(测评方):给予等级保护2.0认证证书,三级以上系统增加公安备案。

        cycle. 监督检查(公安部):依据《公安机关信息安全等级保护检查工作规范》三级以上系统每年要进行周期性的等保测评,

通过等级保护2.0认证,企业不仅能够获得等级保护认证证书,实现信息资产的安全基础建设,还可以增强业务竞争力与客户信任。

好的,我可以回答这个问题。以下是基于Vision Transformer的图片分类和以的代码示例: ```python import torch import torchvision from PIL import Image import requests from io import BytesIO # 加载预训练的Vision Transformer模型 model = torch.hub.load('facebookresearch/deit:main', 'deit_base_patch16_224', pretrained=True) # 加载ImageNet标签 labels_url = 'https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt' response = requests.get(labels_url) labels = response.text.split('\n') # 定义分类函数 def classify_image(image_path): # 加载图片并进行预处理 image = Image.open(image_path) preprocess = torchvision.transforms.Compose([ torchvision.transforms.Resize(256), torchvision.transforms.CenterCrop(224), torchvision.transforms.ToTensor(), torchvision.transforms.Normalize( mean=[.485, .456, .406], std=[.229, .224, .225] ) ]) image_tensor = preprocess(image) image_batch = image_tensor.unsqueeze() # 添加批次维度 # 使用模型进行推理 with torch.no_grad(): output = model(image_batch) # 获取预测结果 probabilities = torch.nn.functional.softmax(output[], dim=) top_prob, top_label = torch.topk(probabilities, 1) # 返回预测结果 return labels[top_label[]], top_prob[] # 测试分类函数 image_url = 'https://images.pexels.com/photos/414612/pexels-photo-414612.jpeg' response = requests.get(image_url) image = Image.open(BytesIO(response.content)) image.save('test.jpg') label, prob = classify_image('test.jpg') print(f'预测结果: {label}, 置信度: {prob:.2f}') # 定义以函数 def search_similar_images(image_path, dataset_path, num_results=5): # 加载图片并进行预处理 image = Image.open(image_path) preprocess = torchvision.transforms.Compose([ torchvision.transforms.Resize(256), torchvision.transforms.CenterCrop(224), torchvision.transforms.ToTensor(), torchvision.transforms.Normalize( mean=[.485, .456, .406], std=[.229, .224, .225] ) ]) image_tensor = preprocess(image) image_batch = image_tensor.unsqueeze() # 添加批次维度 # 使用模型进行特征提取 with torch.no_grad(): features = model.backbone(image_batch).squeeze() # 加载数据集并进行特征提取 dataset = torchvision.datasets.ImageFolder(dataset_path, transform=preprocess) dataset_features = [] for i in range(len(dataset)): with torch.no_grad(): feature = model.backbone(dataset[i][].unsqueeze()).squeeze() dataset_features.append(feature) # 计算相似度并返回结果 similarities = torch.nn.functional.cosine_similarity(features, torch.stack(dataset_features)) top_similarities, top_indices = torch.topk(similarities, num_results) results = [] for i in range(num_results): image_path = dataset.samples[top_indices[i]][] results.append((image_path, top_similarities[i])) return results # 测试以函数 results = search_similar_images('test.jpg', 'dataset') for result in results: print(f'相似图片: {result[]}, 相似度: {result[1]:.2f}') ``` 请注意,这只是一个简单的示例代码,实际应用中可能需要进行更多的优化和调整。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值