推荐系统(Recommender Systems) 原理与代码实例讲解

推荐系统(Recommender Systems) - 原理与代码实例讲解

关键词:推荐系统,协同过滤,深度学习,矩阵分解,内容过滤,混合推荐系统,标签预测,模型评估,用户行为分析,推荐系统性能提升,推荐算法,推荐系统应用

1. 背景介绍

1.1 问题由来

随着互联网技术的发展,信息过载的问题日益严重。为了解决这一问题,推荐系统应运而生,通过分析用户的历史行为数据,预测用户可能感兴趣的项目,以提供个性化的推荐服务。推荐系统在电子商务、新闻媒体、社交网络等多个领域得到了广泛应用,极大地提升了用户体验。

目前,推荐系统主要分为两种类型:协同过滤和基于内容的推荐系统。协同过滤主要依赖用户之间的相似性进行推荐,而基于内容的推荐系统则侧重于物品本身的属性特征进行推荐。两者各有优劣,实际应用中常常结合使用,形成了混合推荐系统。

近年来,深度学习在推荐系统中的应用也逐渐增多。深度学习可以通过学习复杂的多维特征表示,挖掘用户和物品之间的潜在关系,从而提高推荐系统的精准度和个性化水平。

1.2 问题核心关键点

推荐系统的主要核心问题包括:

  • 如何高效获取用户行为数据
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值