传统搜索推荐系统的单向交互
1. 背景介绍
1.1 问题由来
在当前信息爆炸的时代,如何从海量数据中快速、精准地找到用户感兴趣的内容,成为了互联网领域亟待解决的问题。传统搜索推荐系统便是针对这一问题而设计的一类解决方案,其中最为经典和成熟的技术是基于向量空间模型的协同过滤(Collaborative Filtering, CF)。该方法通过分析用户和物品的评分数据,构建用户-物品之间的相似性,从而推断用户可能感兴趣的新物品。
然而,传统的协同过滤方法存在诸多局限性。主要问题在于,它假设用户对物品的评分数据是可靠的,且用户和物品的相似性是根据历史评分来计算的。这意味着,用户和物品之间是单向的交互关系,无法利用用户对物品的详细反馈信息。此外,协同过滤方法往往忽略用户对物品之间的直接比较信息,无法利用用户对物品之间的相对评分。
为了解决这些问题,研究者提出了基于序列推荐和基于交互推荐的方法,这些方法能够在用户-物品单向交互关系之外,利用更多的交互信息,提升推荐效果。但这些方法也面临着新的挑战,如如何有效地处理用户对物品之间的相对评分,如何在处理序列数据的同时,保持推荐系统的实时性和效率。
本文将对基于序列推荐和基于交互推荐的方法进行详细探讨,分析它们的原理、步骤、优缺点和应用领域