【LangChain编程:从入门到实践】VectorStoreRetrieverMemory

【LangChain编程:从入门到实践】VectorStoreRetrieverMemory

关键词:LangChain, vectorization, indexing, retrieval, memory management, Python

1. 背景介绍

1.1 问题由来

在自然语言处理(NLP)领域,向量空间模型(Vector Space Model, VSM)已经成为了处理文本信息的一种主流技术。然而,传统的基于查询-文档对(query-document pairs)的VSM模型在处理大规模文档时,面临计算开销大和查询效率低下的问题。

随着大规模语料库的涌现和深度学习技术的发展,基于矢量化(Vectorization)的文本表示方法逐渐兴起。这些方法利用深度学习模型将文本编码为高维向量,利用索引(Indexing)技术快速存储和检索这些向量,从而显著提升了文本检索的效率。

在此背景下,LangChain项目应运而生。LangChain是一个开源的Python库,旨在为开发者提供一个简单易用的文本检索框架,通过矢量化和索引技术,使得文本检索变得高效且灵活。

1.2 问题核心关键点

LangChain的核心在于其创新的向量存储和检索机制。通过利用PyTorch的矢量化技术和Elasticsearch的索引功能,LangChain实现了高效的文本检索,具有以下特点:

<
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值