【LangChain编程:从入门到实践】VectorStoreRetrieverMemory
关键词:LangChain, vectorization, indexing, retrieval, memory management, Python
1. 背景介绍
1.1 问题由来
在自然语言处理(NLP)领域,向量空间模型(Vector Space Model, VSM)已经成为了处理文本信息的一种主流技术。然而,传统的基于查询-文档对(query-document pairs)的VSM模型在处理大规模文档时,面临计算开销大和查询效率低下的问题。
随着大规模语料库的涌现和深度学习技术的发展,基于矢量化(Vectorization)的文本表示方法逐渐兴起。这些方法利用深度学习模型将文本编码为高维向量,利用索引(Indexing)技术快速存储和检索这些向量,从而显著提升了文本检索的效率。
在此背景下,LangChain项目应运而生。LangChain是一个开源的Python库,旨在为开发者提供一个简单易用的文本检索框架,通过矢量化和索引技术,使得文本检索变得高效且灵活。
1.2 问题核心关键点
LangChain的核心在于其创新的向量存储和检索机制。通过利用PyTorch的矢量化技术和Elasticsearch的索引功能,LangChain实现了高效的文本检索,具有以下特点:
<