Transformer代码实现
关键词:Transformer, 机器学习, 自然语言处理, 编码器-解码器架构, 自注意力机制, 位置编码, 位置敏感注意力, 自回归语言模型
1. 背景介绍
自2017年Transformer模型提出以来,它已成为自然语言处理(NLP)领域的里程碑式突破。Transformer通过引入自注意力机制,摆脱了循环神经网络(RNN)中的序列依赖问题,使得并行化处理成为可能,从而在众多NLP任务上取得了显著的性能提升。本文将深入探讨Transformer模型的原理,并提供一个详细的代码实现示例,帮助读者更好地理解这一重要的深度学习架构。
2. 核心概念与联系
2.1 Transformer模型架构
Transformer模型采用编码器-解码器(Encoder-Decoder)架构,通过自注意力(Self-Attention)机制实现序列到序列的转换。以下是Transformer模型架构的Mermaid流程图:
graph LR
A[输入序列] --> B{编码器}
B --> C{多头自注