Transformer代码实现

Transformer代码实现

关键词:Transformer, 机器学习, 自然语言处理, 编码器-解码器架构, 自注意力机制, 位置编码, 位置敏感注意力, 自回归语言模型

1. 背景介绍

自2017年Transformer模型提出以来,它已成为自然语言处理(NLP)领域的里程碑式突破。Transformer通过引入自注意力机制,摆脱了循环神经网络(RNN)中的序列依赖问题,使得并行化处理成为可能,从而在众多NLP任务上取得了显著的性能提升。本文将深入探讨Transformer模型的原理,并提供一个详细的代码实现示例,帮助读者更好地理解这一重要的深度学习架构。

2. 核心概念与联系

2.1 Transformer模型架构

Transformer模型采用编码器-解码器(Encoder-Decoder)架构,通过自注意力(Self-Attention)机制实现序列到序列的转换。以下是Transformer模型架构的Mermaid流程图:

graph LR
    A[输入序列] --> B{编码器}
    B --> C{多头自注
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值