Agentic AI创新应用实战:提示工程架构师的4步部署指南
引言:为什么Agentic AI部署这么难?
你有没有遇到过这样的场景?
- 花了几周训练的AI Agent,一上线就“翻车”:用户问“我的快递啥时候到”,它居然回复“请提供订单号”——可用户明明已经在对话里发过3次订单号了;
- 多个Agent协作时乱成一锅粥:售后Agent刚要处理退款,推荐Agent突然插进来发了个产品链接,把用户搞蒙了;
- 提示词改了几十版,效果还是不稳定:有时候能精准调用工具,有时候却像没读提示一样瞎回复。
这些问题,本质上是Agentic AI的“工程化落地能力”不足。相比单纯的LLM应用(比如聊天机器人),Agentic AI需要解决“感知-决策-执行”的闭环问题,还要处理多Agent协作、工具调用、动态环境适应等复杂场景。而提示工程架构师的核心任务,就是把这些复杂问题拆解成可落地的步骤,让AI Agent从“实验室 demo”变成“生产级应用”。
今天,我会分享一套4步部署指南,结合我在电商、医疗领域的实战经验,帮你避开Agentic AI部署的“坑”。最终,你会掌握从“需求建模”到“迭代优化”的完整流程,让你的AI Agent真正能“解决问题”。
准备工作:你需要这些“武器”
在开始之前,先确认你已经具备以下条件:

订阅专栏 解锁全文

3304

被折叠的 条评论
为什么被折叠?



