数据分析师必修课:建模与实验对比的傻瓜式通关手册

#新星杯·14天创作挑战营·第15期#

一、为什么建模像做菜?(建立认知锚点)

想象你要开发一道新菜:

数据=冰箱里的食材(食材决定上限)

模型=菜谱(算法是烹饪方法)

实验对比=邀请朋友试吃(AB测试)

二、建模四步法(可复用的方法论)

1.数据清晰:像处理食材

删除腐烂数据(异常值)

切配标准化(特征工程)

去除鱼鳞(缺失值处理)

2.模型选择:根据场合选厨具

问题类型   适用模型   生活比喻

预测销售    线性回归    计算买菜预算

用户分类    决策树          医院分诊台

图片识别     神经网络      人脸识别门禁

3.训练模型:掌握火候

过拟合=把菜煮糊了(记住所有训练样本)

欠拟合=菜没煮熟(没学到规律)

验证集=试吃小份

4.评估指标:用数据说话

准确率=顾客满意

AUC-ROC=菜品受欢迎度曲线

混淆矩阵=好评差评分类表

三、实验对比三板斧(面试高频考点

1、AB测试设计原则

控制变量法:只换一个调料

样本量要够:至少30人试吃

随机分组:盲目测试

2.常见陷阱

辛普森悖论:冬季销量高但冰淇淋卖得好

幸存者偏差:只调研存活餐厅

时间混肴:周末促销得干扰

3.结果解读模板

模型A比B的准确率提升15%(p<0.05),主要因为增加了用户行为特征,但训练时间延长了2倍。

四、记忆技巧(面试急救包)

建模口诀:洗选训练评,防过防欠防

实验对比三问:

1,分组是否随机?

2,样本是否够大?

3,是否排除干扰

模型选择树:

graph LR分类>/数据少/逻辑回归  分类>/数据多/随机森林   预测>/线性/线性回归  预测>/非线性/SVM

五、上手练习(立即实践)

1.用excel做线性回归(数据→数据分析→回归)

2.在Kaggle下载titanic数据集尝试分类

3.用Google  Optimize设计简单AB测试(AI生成)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值