一、为什么建模像做菜?(建立认知锚点)
想象你要开发一道新菜:
数据=冰箱里的食材(食材决定上限)
模型=菜谱(算法是烹饪方法)
实验对比=邀请朋友试吃(AB测试)
二、建模四步法(可复用的方法论)
1.数据清晰:像处理食材
删除腐烂数据(异常值)
切配标准化(特征工程)
去除鱼鳞(缺失值处理)
2.模型选择:根据场合选厨具
问题类型 适用模型 生活比喻
预测销售 线性回归 计算买菜预算
用户分类 决策树 医院分诊台
图片识别 神经网络 人脸识别门禁
3.训练模型:掌握火候
过拟合=把菜煮糊了(记住所有训练样本)
欠拟合=菜没煮熟(没学到规律)
验证集=试吃小份
4.评估指标:用数据说话
准确率=顾客满意
AUC-ROC=菜品受欢迎度曲线
混淆矩阵=好评差评分类表
三、实验对比三板斧(面试高频考点
1、AB测试设计原则
控制变量法:只换一个调料
样本量要够:至少30人试吃
随机分组:盲目测试
2.常见陷阱
辛普森悖论:冬季销量高但冰淇淋卖得好
幸存者偏差:只调研存活餐厅
时间混肴:周末促销得干扰
3.结果解读模板
模型A比B的准确率提升15%(p<0.05),主要因为增加了用户行为特征,但训练时间延长了2倍。
四、记忆技巧(面试急救包)
建模口诀:洗选训练评,防过防欠防
实验对比三问:
1,分组是否随机?
2,样本是否够大?
3,是否排除干扰
模型选择树:
graph LR分类>/数据少/逻辑回归 分类>/数据多/随机森林 预测>/线性/线性回归 预测>/非线性/SVM
五、上手练习(立即实践)
1.用excel做线性回归(数据→数据分析→回归)
2.在Kaggle下载titanic数据集尝试分类
3.用Google Optimize设计简单AB测试(AI生成)