在体育赛事的世界里,数据正成为理解比赛、评估球员和制定策略的关键。今天,让我们走进一项具有开创性的研究——RisingBALLER,看看它如何借助前沿技术,为体育赛事数据分析带来全新的视角与方法。
研究背景:传统方法的局限与新机遇
近年来,机器学习领域因Transformer架构的出现而发生了革命性变化,这一架构在自然语言处理和计算机视觉等领域取得了巨大成功。然而,体育赛事分析领域仍大量依赖手工制作的球员特征表示。这些传统方法不仅耗时耗力,难以重现和扩展,而且无法充分捕捉体育赛事比赛的复杂性和动态性。例如,过往研究通过手工构建大量性能变量来度量球员间的距离,以此聚类相似球员,但这些特征往往局限于特定赛季 ,难以推广应用。那么,能否将自然语言处理和计算机视觉中基础模型的成功理念引入体育赛事分析,为球员和球队构建高级别的基础表示呢?这正是RisingBALLER诞生的契机。
RisingBALLER:架构与创新
数据基石
RisingBALLER使用了StatsBomb提供的2015 - 2016赛季欧洲五大联赛的比赛事件数据。通过对这些数据的精心处理,从原始的比