基于Python数据分析与可视化预测项目实例分享

基于Python数据分析与可视化预测项目实例分享

包含源码、实战案例和数据集,支持直接在Jupyter Notebook中打开,让您即刻开始数据分析和可视化的实战演练。

50个Pyecharts可视化实例: 从基础到高级,涵盖50个Pyecharts可视化实例,包括职场数据分析师职位分析、员工离职原因分析、微博情感分析等,每个案例均包含约300行代码,助您深入理解数据探索和分析

29个深度分析案例: 精选29个深度分析案例,覆盖电影票房、奥运会数据、时令蔬菜时间序列、人口普查数据等多个领域,每个案例均包含详细的代码实现和分析报告,让您全面掌握数据分析的各个方面。
可视化大屏项目: 包括国产进口电影票房榜单分析、春节档票房分析等大屏可视化项目,使用Pyecharts技术,让您的数据分析结果更加直观、震撼。

高级分析技术: 涵盖支持向量机、随机森林、XGBoost、逻辑回归等多种高级分析技术,让您在数据分析领域更加游刃有余。

在这里插入图片描述


以下为示例代码,仅供参考!

下面是一个基于Python的数据分析与可视化预测项目的完整示例,包含代码和说明。该项目适用于时间序列数据(例如:股票价格、销售额、气温等),使用 Pandas 处理数据Matplotlib 和 Seaborn 可视化分析结果,并用 Scikit-learn 或 statsmodels 进行简单预测


🧠 项目目标

对某公司某产品月度销量进行数据分析与未来销量预测。


✅ 使用技术栈

技术工具
数据处理pandas, numpy
数据可视化matplotlib, seaborn
预测模型scikit-learn (线性回归) / statsmodels (ARIMA)
环境Python 3.x, Jupyter Notebook / VS Code

💾 示例数据格式(CSV)

Month,Sales
2020-01,250
2020-02,260
2020-03,275
2020-04,280
...

你可以自己创建该CSV文件,或从Kaggle、UCI等平台获取类似的时间序列数据。

在这里插入图片描述

📦 步骤一:导入库

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error
from statsmodels.tsa.arima.model import ARIMA

📊 步骤二:加载与预处理数据

# 加载数据
df = pd.read_csv("sales_data.csv")

# 转换日期格式
df['Month'] = pd.to_datetime(df['Month'])
df.set_index('Month', inplace=True)

# 查看前几条数据
print(df.head())

# 检查缺失值
print(df.isnull().sum())

📈 步骤三:数据可视化分析

# 设置画布大小
plt.figure(figsize=(12,6))

# 绘制折线图
sns.lineplot(data=df, x=df.index, y='Sales')
plt.title("Monthly Sales Trend")
plt.xlabel("Month")
plt.ylabel("Sales")
plt.grid(True)
plt.show()

🔍 步骤四:特征工程(用于机器学习方法)

将“月份”转换为数字形式,作为训练特征:

df.reset_index(inplace=True)
df['Month_num'] = np.arange(len(df))

X = df[['Month_num']]
y = df['Sales']

🤖 方法一:使用线性回归建模预测

# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, shuffle=False)

# 创建模型
model = LinearRegression()
model.fit(X_train, y_train)

# 预测
y_pred = model.predict(X_test)

# 计算误差
mse = mean_squared_error(y_test, y_pred)
print("MSE:", mse)

# 绘图展示预测结果
plt.figure(figsize=(10,5))
plt.plot(df['Month'], df['Sales'], label="Actual Sales", color="blue")
plt.plot(df.loc[X_test.index, 'Month'], y_pred, label="Predicted Sales", color="red", linestyle="--")
plt.legend()
plt.title("Linear Regression Prediction")
plt.show()

🕰️ 方法二:使用ARIMA做时间序列预测(推荐用于时序)

# 使用ARIMA模型
model = ARIMA(df['Sales'], order=(2,1,2))  # p,d,q 参数可根据AIC优化
results = model.fit()

# 预测未来12个月
forecast = results.forecast(steps=12)

# 可视化历史+预测
plt.figure(figsize=(10,5))
plt.plot(df['Sales'], label="Historical")
plt.plot(forecast, label="Forecast", color="green")
plt.title("ARIMA Forecasting")
plt.legend()
plt.show()

在这里插入图片描述

🚀 总结与扩展建议

✅ 当前功能已完成:

  • 数据加载与清洗
  • 时间序列趋势可视化
  • 线性回归预测
  • ARIMA时间序列预测

🔁 可扩展方向:

  1. 加入更多特征(如广告投入、季节因素)
  2. 使用LSTM神经网络进行预测
  3. 构建Web界面(Flask/Django + ECharts前端图表)
  4. 自动化预测系统 + 定期更新

📎 附录:依赖安装命令

pip install pandas numpy matplotlib seaborn scikit-learn statsmodels

如果你使用Jupyter Notebook,可以一行一行运行上述代码,实时查看结果。


📌 最终成果展示(可做PPT/报告内容):

  • 销量趋势图
  • 实际 vs 预测对比图
  • 预测误差指标(RMSE/MSE)
  • 模型选择与评估结论

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值