电子信息工程及其通信工程项目,电气工程及其自动化!
电气工程,电气自动化,电子工程,信息处理工程,计算机工程,通讯工程,机械工程,集成电路,信息信号处理,电磁信号,电力系统规划,电机与电力电子,控制系统的建模与分析,电气设备,电磁场与电磁波等等!
MATLAB仿真,simulink仿真,模型搭建通信+电子信息+电气工程+自动化相关类仿真,模型搭建都可信息工程信号与系统申磁场
(中文英文均可)
控制策略,高频电路,微波电路
数字系统s计verilog,传感器原理射频电路,电信系统,移动通信无线系统,通信原理,信息论
信号与系统,优化分析,计算机组成
固态器件,电子系统留学生电子信息工程
控制工程,高频电路,微波电路射频电路,电信系统,移动通信无线系统,通信原理,信息论
信号与系统,优化分析,计算机组成
固态器件,电子系统
擅长信号与系统,电磁场,电动力学,数电模电,通信原理,控制理论,传输线,微波原理,数字信号处理,随机信号分析,高频电子线路,信息论,MATLAB滤波器
深度学习,python代码定制,创新点指导指导你一点改代码,提升coding能力,多模态,CLIP,Mamba,BLIP,扩散模型,遥感图像分割,图像恢复,图像去雨,文本到图像生成,图像着色,图像融合,图像分割,目标检测,图像去雾,图像编辑,图像超分辨率,盲图像,低光照增强,风格迁移,图像修复,low level,agent,llm和多模态大模型。模型创新模型创新。模型创新
深度学习,计算机视觉
检测,分割,视频处理,估计,人脸,目标跟踪,图像&视频检索/视频理解,医学影像,GAN/生成式/对抗式,图像生成/图像合成,神经网络结构设计,数据处理,模型训练/泛化,图像特征提取与匹配,视觉表征学习,模型评估,多模态学习,视觉预测,数据集,小样本学习/零样本学习,持续学习,迁移学习/domain/自适应,场景图,视觉推理/视觉问答,对比学习
Python深度学习算法模型训练定制
涵盖从基础的电子电路设计到高级的深度学习应用等多个领域,我将提供一个简化的例子,该例子将结合MATLAB和Simulink来实现一个基本的通信系统仿真模型。这个例子将会展示如何使用MATLAB进行信号生成、调制解调以及错误率计算,并在Simulink中搭建相应的模型。
MATLAB代码示例:BPSK调制与解调
% 参数设置
numBits = 1000; % 生成的比特数
EbNo = 5; % 能量每比特对噪声功率谱密度比 (dB)
% 生成随机二进制数据
data = randi([0 1], numBits, 1);
% BPSK调制
modSignal = 2*data - 1;
% 添加AWGN噪声
snr = EbNo + 10*log10(1); % 计算SNR
noisySignal = awgn(modSignal, snr, 'measured');
% BPSK解调
demodData = real(noisySignal) > 0;
% 计算比特错误率
[numErrors, ber] = biterr(data, demodData);
disp(['比特错误率 = ', num2str(ber)]);
% 绘图
figure;
subplot(3,1,1);
stairs(data);
title('原始数据');
subplot(3,1,2);
plot(modSignal);
title('调制后的信号');
subplot(3,1,3);
stairs(demodData);
title('解调后的数据');
Simulink模型示例:BPSK调制解调器
为了在Simulink中创建一个类似的BPSK调制解调器模型,您可以按照以下步骤操作:
- 打开Simulink并新建一个空白模型。
- 使用“Random Integer Generator”块生成随机二进制数据。
- 添加“Rectangular QAM Modulator Baseband”块,并设置为BPSK模式进行调制。
- 使用“AWGN Channel”块模拟信道中的加性高斯白噪声。
- 添加“Rectangular QAM Demodulator Baseband”块进行解调。
- 利用“Error Rate Calculation”块计算比特错误率。
- 连接各个模块并配置参数以匹配上述MATLAB脚本中的设置。
这是一段关于二极管伏安特性的笔记。为了更好地理解二极管的特性并进行相关的计算和仿真,我们可以使用Python结合Matplotlib库来绘制二极管的伏安特性曲线。以下是一个简单的示例代码,用于生成二极管的伏安特性曲线,并展示温度对伏安特性的影响。
Python 代码示例:绘制二极管伏安特性曲线
import numpy as np
import matplotlib.pyplot as plt
# 定义二极管伏安特性方程
def diode_current(V, Is, n, Vt):
return Is * (np.exp(V / (n * Vt)) - 1)
# 参数设置
Is = 1e-12 # 反向饱和电流(A)
Vt = 0.026 # 热电压(V),在室温下约为26mV
n = 1 # 发射系数
# 电压范围
V = np.linspace(-0.5, 0.5, 1000)
# 不同温度下的热电压
temperatures = [273, 300, 323] # 温度(K)
Vts = [0.02585, 0.026, 0.02615] # 对应的热电压(V)
plt.figure(figsize=(10, 6))
for T, Vt in zip(temperatures, Vts):
I = diode_current(V, Is, n, Vt)
plt.plot(V, I, label=f'Temperature = {T-273}°C')
plt.axhline(0, color='black',linewidth=0.5)
plt.axvline(0, color='black',linewidth=0.5)
plt.title('Diode IV Characteristics at Different Temperatures')
plt.xlabel('Voltage (V)')
plt.ylabel('Current (A)')
plt.legend()
plt.grid(True)
plt.show()
代码解释:
-
定义二极管伏安特性方程:
diode_current
函数实现了二极管的伏安特性方程 (I = I_S \left(e^{\frac{V}{nV_T}} - 1\right)),其中 (I_S) 是反向饱和电流,(V) 是施加的电压,(n) 是发射系数,(V_T) 是热电压。
-
参数设置:
Is
表示反向饱和电流,通常为很小的值。Vt
表示热电压,在室温下大约为26mV。n
表示发射系数,一般取值为1。
-
电压范围:
- 使用
np.linspace
生成从 -0.5V 到 0.5V 的电压范围,用于计算不同电压下的电流。
- 使用
-
不同温度下的热电压:
- 定义了三个不同的温度点及其对应的热电压值。
-
绘制伏安特性曲线:
- 使用
matplotlib
库绘制不同温度下的二极管伏安特性曲线,并添加图例、标题和网格线以增强可读性。
- 使用