基于python的大学毕业生就业分析预测 含报告

基于python的大学毕业生就业分析预测 含报告

在这里插入图片描述

基于Python的大学毕业生就业分析预测

一、项目概述

本项目旨在利用Python进行数据分析和机器学习,对大学毕业生的就业情况进行分析并预测。通过收集相关数据集(如学历、专业、成绩、实习经历等),使用统计分析方法理解影响就业的关键因素,并构建预测模型来预测毕业生的就业情况。

二、开发环境

  • Python 3.8
  • Pandas:用于数据处理
  • NumPy:用于数值计算
  • Matplotlib/Seaborn:用于数据可视化
  • Scikit-learn:用于机器学习模型构建

三、数据集说明

假设我们有一个数据集graduates.csv,包含以下字段:

  • ID: 毕业生编号
  • Gender: 性别
  • Major: 专业
  • GPA: 学分绩点
  • Internships: 实习次数
  • Employed: 就业状态(1表示已就业,0表示未就业)

四、代码实现

1. 数据预处理

import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import LabelEncoder, StandardScaler

# 加载数据集
data = pd.read_csv('graduates.csv')

# 查看数据集基本信息
print(data.info())
print(data.describe())

# 处理缺失值(这里简单地删除)
data.dropna(inplace=True)

# 特征编码(将非数值特征转换为数值特征)
labelencoder = LabelEncoder()
data['Gender'] = labelencoder.fit_transform(data['Gender'])
data['Major'] = labelencoder.fit_transform(data['Major'])

# 分离特征和目标变量
X = data[['Gender', 'Major', 'GPA', 'Internships']]
y = data['Employed']

# 数据标准化
scaler = StandardScaler()
X = scaler.fit_transform(X)

# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

在这里插入图片描述

2. 数据探索性分析

import matplotlib.pyplot as plt
import seaborn as sns

# 绘制GPA与就业状态的关系图
plt.figure(figsize=(10,6))
sns.boxplot(x='Employed', y='GPA', data=data)
plt.title('GPA vs Employment Status')
plt.show()

# 绘制不同专业的就业率
employment_rate_by_major = data.groupby('Major')['Employed'].mean().sort_values(ascending=False)
employment_rate_by_major.plot(kind='bar', figsize=(10,6))
plt.title('Employment Rate by Major')
plt.xlabel('Major')
plt.ylabel('Employment Rate')
plt.show()

3. 构建预测模型

(1) 使用逻辑回归模型
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score, classification_report

# 初始化逻辑回归模型
model = LogisticRegression()

# 训练模型
model.fit(X_train, y_train)

# 预测
y_pred = model.predict(X_test)

# 评估模型性能
print("Accuracy:", accuracy_score(y_test, y_pred))
print(classification_report(y_test, y_pred))
(2) 使用随机森林模型
from sklearn.ensemble import RandomForestClassifier

# 初始化随机森林模型
rf_model = RandomForestClassifier(n_estimators=100, random_state=42)

# 训练模型
rf_model.fit(X_train, y_train)

# 预测
y_pred_rf = rf_model.predict(X_test)

# 评估模型性能
print("Random Forest Accuracy:", accuracy_score(y_test, y_pred_rf))
print(classification_report(y_test, y_pred_rf))

在这里插入图片描述

五、结果与讨论

通过上述步骤,我们可以完成大学毕业生就业情况的数据分析和预测。以下是主要发现:

  1. GPA与就业状态:一般来说,GPA较高的学生更有可能找到工作。
  2. 专业差异:不同专业的就业率存在显著差异,某些热门专业的就业率明显高于其他专业。
  3. 实习经历的重要性:拥有更多实习经历的学生在就业市场上更具竞争力。

基于逻辑回归和随机森林两种模型的预测结果显示,随机森林模型在本案例中表现更好,准确率更高,能够更好地捕捉数据中的复杂模式。

六、结论

本项目展示了如何使用Python进行数据分析和机器学习,以理解和预测大学毕业生的就业情况。通过数据预处理、探索性分析以及模型构建,我们不仅能识别出影响毕业生就业的主要因素,还能基于这些信息构建有效的预测模型,帮助教育机构和个人做出更好的职业规划决策。未来的工作可以考虑增加更多的特征(如技能证书、社会活动等)以进一步提升模型的预测能力。

七、环境配置

主要技术: python+Vue+Mysql+Django
环境配置: Mysql8,python3.7.7
操作系统: Windows10/MacOs
架构模式: MVC
开发工具: pycharm
数据库版本: Mysql8
数据库可视化工具: Navicat

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值