本地部署 DeepSeek 多模态大模型!支持图像识别和图像生成

DeepSeek开源多模态大模型Janus-Pro-7B,普通电脑可以直接安装使用!支持图像识别和图像生成,性能非常强悍!

OIF.webp

特别说明!

虽说现在的电脑基本都能跑,但是最好还是十几代的 CPU 或者 GPU。

安装教程

1、检查自己是否安装了 Git 和 conda ,如果没有安装,请点击前往下载【Git】和 【Conda】

git --version
conda --version

2. 创建虚拟环境

conda create -n myenvp python=3.10 -y

3. 激活 Conda 环境

conda activate myenvp

4. 克隆 Janus 项目

git clone https://github.com/deepseek-ai/Janus.git

5. 进入 Janus 目录

cd Janus

6. 安装 Janus 依赖

pip install -e .

7. 安装 Gradio(UI)

pip install gradio

8. 启动 UI

获取命令:https://life.mdjsjd.me/archives/50.html

### Java项目中接入DeepSeek进行本地部署 #### 准备环境 为了在Java项目中成功集成并使用DeepSeek,需确保开发环境中已安装必要的工具服务。这包括但不限于Docker用于容器管理,以及配置好支持DeepSeek运行的基础架构。 对于Windows与Mac系统的具体操作指南可参见相关文档说明[^3]。通过访问Ollama官方网站获取对应平台下的最新版安装文件来完成初步设置工作。 #### 修改IDEA配置 针对JetBrains IntelliJ IDEA这一流行的Java IDE,在其内部集成了对DeepSeek支持功能模块之后,开发者可以更便捷地利用该技术辅助日常编码任务。具体的启用步骤如下: - 打开项目的Settings/Preferences对话框; - 寻找Editor -> General -> Code Completion选项卡; - 勾选`Enable code completions`开关以激活自动补全特性; - 将FIM template字段调整为适合DeepSeek使用的模式——即设定成`DeepSeek Coder`样式; - 更新URL指向至官方API端点:`https://api.deepseek.com/chat/completions`; - 更改Body部分所指定的模型名称为`deepseek-chat`. 上述更改使得IDE能够识别并向DeepSeek服务器发送请求从而获得智能化建议或解决方案片段[^4]. ```java // 示例代码展示如何调用外部HTTP接口(模拟向DeepSeek API发起查询) import java.io.*; import java.net.HttpURLConnection; import java.net.URL; public class DeepSeekClient { private static final String DEEPSEEK_API_URL = "https://api.deepseek.com/chat/completions"; public static void main(String[] args) throws IOException { URL url = new URL(DEEPSEEK_API_URL); HttpURLConnection conn = (HttpURLConnection)url.openConnection(); // 设置连接参数... conn.setRequestMethod("POST"); conn.setDoOutput(true); try(PrintWriter out = new PrintWriter(conn.getOutputStream())) { // 构建JSON格式的消息体, 包含要传递的数据如model="deepseek-chat" String jsonInputString = "{\"model\":\"deepseek-chat\"}"; out.print(jsonInputString); out.flush(); int responseCode = conn.getResponseCode(); System.out.println("Response Code : " + responseCode); BufferedReader in = new BufferedReader( new InputStreamReader(conn.getInputStream())); String inputLine; StringBuffer content = new StringBuffer(); while ((inputLine = in.readLine()) != null){ content.append(inputLine); } in.close(); conn.disconnect(); // 输出返回的结果数据 System.out.println(content.toString()); } catch(Exception e){ e.printStackTrace(); } } } ``` 此段程序展示了怎样构建一个简单的客户端应用程序去接触远程Web服务,并处理来自这些服务的信息反馈。当然实际应用时还需要考虑更多细节比如错误处理机制、安全性保障措施等。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值