一、DeepSeek平台能力解析
1.1 基础设施支持
-
算力层:支持千卡级GPU集群调度,单任务可调度256块A100进行混合精度训练
-
数据层:内置跨模态数据湖,支持图像/文本/语音并行预处理(吞吐量达20TB/小时)
-
工具链:提供多模态预训练模型库(如DeepSeek-Vision、DeepSeek-Language)
1.2 核心组件调用
python
复制
from deepseek import MultiModalDatasetLoader, CrossModalFusionTrainer from deepseek.models import CLIP_Enhancer, MMTransformer
二、跨模态融合技术方案
2.1 数据级融合策略
模态类型 | 处理方法 | DeepSeek工具 |
---|---|---|
视觉数据 | 空间金字塔池化(SPP) + ResNet-200 | VisionPreprocessor.SPP() |
文本数据 | BERT-wwm动态词向量 | TextEncoder.BERTwwm() |
点云数据 | PointNet++特征提取 | PointCloudProcessor.Voxelize() |
时序数据 | TCN时间卷积网络 | TimeSeriesEncoder.TCN() |
关键操作:
python
复制
# 多模态数据并行加载 dataset = MultiModalDatasetLoader( image_dir="coco/images", text_json="coco/annotations", pointcloud_dir="lidar/scenes", temporal_sampling_rate=30Hz ).apply_transforms() # 特征对齐 aligned_featu