如何使用Python抓取公共Google地图数据和评论

Google Maps列出了数百万家企业,访问这些宝贵的数据可以提供对消费者行为、市场趋势和竞争分析的深入了解。通过抓取Google Maps数据和评论,开发者、营销人员和数据分析师可以改变他们的工作方式,使他们能够高效地提取基于位置的信息。

在本指南中,我们将引导您完成使用Python抓取Google Maps的过程,涵盖从设置环境到提取数据和聚合评论的所有内容。

了解Google Maps数据

Google Maps提供了大量对各种用例(例如商业分析、市场研究和竞争情报)具有巨大价值的数据。为了有效地抓取Google Maps数据,必须了解可用的数据、其结构以及最佳的提取方法。让我们仔细看看Google Maps提供的不同类型的数据以及如何高效地提取它们。

Google Maps数据类型

当您爬取Google Maps时,最常见的类型是:

  • **商家信息:**Google Maps上的每个位置或企业都包含详细信息,包括其名称、地址、联系信息和网站。这些数据通常显示在商家资料中,可以抓取以收集有关各个行业企业的关键信息。
  • **评分和评论:**Google Maps上最有价值的数据点之一是与商家相关的评分和评论。这包括平均星级评分、个人评论、评论者姓名、评论日期以及有时评论者的照片。评论可以提供关于客户满意度和情绪的宝贵见解。
  • **位置坐标:**Google Maps上的每个地点都与地理坐标(纬度和经度)相关联,这对于地图绘制、地理定位或基于位置的分析非常有用。
  • **营业时间:**Google Maps为大多数企业提供营业时间,包括开放和关闭时间,这些时间在周末或节假日可能会有所不同。
  • **照片和媒体:**许多企业将其照片上传到他们的Google Maps资料中。可以抓取这些图像以提供有关企业其他背景信息,例如商店布局、食物(对于餐馆)或产品展示。
  • **类别和标签:**Google Maps上的企业贴有类别标签(例如餐厅、健身房或酒店),有时还带有关键字,以帮助用户根据其需求过滤和搜索企业。

如何使用Python抓取Google Maps数据和评论

至少有三种方法可以高效地抓取Google Maps数据:

方法1:使用Scrapeless Google Maps API(推荐)

Scrapeless提供了一个结构良好的JSON,其中包含从Google Maps搜索结果中提取的所有相关信息。它还提供其他综合数据,例如评论、照片和导航路线。通过使用此API,您可以提取Google Maps数据,而无需构建自己的Google Maps抓取工具,从而节省大量时间和精力。

抓取的JSON输出示例:


方法2:使用Google Places API

另一种方法是使用Google Places API,但首先,您需要设置一个Google Cloud项目并按照设置说明获取API密钥。配置完成后,您可以使用HTTP POST请求或Python SDK执行搜索。

缺点:

  • 获取API密钥的初始设置很复杂。
  • 您可能无法提取与直接抓取一样多的数据,尤其是在评论或某些媒体内容方面。

方法3:构建您自己的DIY Google Maps抓取工具

Google Maps动态加载其数据,因此需要使用Puppeteer等工具来正确抓取JavaScript渲染的页面。您可以利用Selenium、Pyppeteer或Playwright Python包来运行无头浏览器并提取相关的Google Maps数据。

缺点:

  • 构建自己的Google Maps抓取工具非常耗时。
  • 您可能会面临IP封锁、设置多个代理和管理请求限制等挑战。

使用Python抓取Google Map数据[快速简便]

在以下部分,我们将详细说明如何通过结合Python和Scrapeless来抓取Google Map数据。

步骤1:我们将使用的工具

让我们介绍如何使用Scrapeless API抓取Google Maps信息。通常,您可能会使用BeautifulSoup、Selenium、Puppeteer或Requests等库来构建自己的DIY解决方案以抓取Google Maps数据。

但是现在,您可以坐下来放松一下。我们将为您处理这些繁琐的任务。使用Scrapeless,您不再需要担心网络抓取过程中可能出现的各种问题。我们为您提供保障,您只需运行代码即可。

使用Scrapeless轻松抓取Google Map数据,让我们来处理复杂性。无论您是想抓取Google Maps评论、位置还是其他有价值的信息,Scrapeless都是您的理想解决方案。告别手动抓取的麻烦,迎接高效的数据提取。

步骤2:设置和准备

  • 免费注册scrapeless后,您可以获得5美元的免费额度来执行搜索。
  • 导航到API密钥管理。然后单击“创建”以生成您的唯一API密钥。创建后,只需单击API密钥即可复制它。

步骤3:编写scrapeless请求代码。

假设我们要根据咖啡关键字查找纽约的场所。此API需要一个ll参数,它是某个区域的纬度和经度。我们可以使用免费工具来获取纬度和经度。

访问此链接,我们只需要输入城市名称或区域,它就会返回相关的经度和纬度。我们将这些数字用逗号分隔,形成一个完整的ll参数。

以纽约为例:

  • 纬度:40.712776
  • 经度:-74.005974

因此ll值为@40.712776,-74.005974

一旦我们有了ll值,我们就可以形成scrapeless API的完整Python代码:

import json
import requests

class Payload:
    def __init__(self, actor, input_data):
        self.actor = actor
        self.input = input_data

def send_request():
    host = "api.scrapeless.com"
    url = f"https://{host}/api/v1/scraper/request"
    token = "your_token"

    headers = {
        "x-api-token": token
    }

    input_data = {
        "engine": "google_maps",
        "q": "coffee",
        "type": "search",
        "ll": "@40.712776,-74.005974.14z",
    }

    payload = Payload("scraper.google.maps", input_data)

    json_payload = json.dumps(payload.__dict__)

    response = requests.post(url, headers=headers, data=json_payload)

    if response.status_code != 200:
        print("Error:", response.status_code, response.text)
        return

    print("body", response.text)


if __name__ == "__main__":
    send_request()

参数说明:

  • 将your_token替换为您从Scrapeless网站获得的API密钥。
  • q参数可与您要搜索的任何关键字一起使用。
  • ll参数指定您要搜索的位置的纬度和经度。
  • 搜索结果可以在result['local_results']或result['place_results']中找到。

place结果和local结果之间的区别

Scrapeless API支持两种类型的搜索。默认情况下,类型设置为search,这会在local_results中返回一个结果数组。另一种类型是place,您将type设置为place并使用data参数提供特定位置或企业的详细信息。这种类型的搜索会返回place_results。

更广泛地说,当搜索范围更广时,会提供local_results列表,而当查询非常具体时,或者当您使用type=place的place_id或data来获取特定位置的结果时,place_results会提供特定位置的详细信息。

有关如何使用这些参数的详细说明,请参阅我们的官方Scrapeless API文档

我们可以从这个Scrapeless Google Map API中获得大量数据,例如:

  • 标题
  • GPS坐标
  • 评论摘要
  • 平均评分
  • 价格
  • 类型
  • 地址
  • 营业时间信息
  • 电话
  • 网站
  • 服务选项
  • 等等。


如何分页显示Google Maps上的所有评论?

除了分页显示我们抓取的结果外,Google Maps通常默认每页返回20个结果,第一页的start参数设置为0。如果您想检索第二页的数据,只需将start参数的值增加20即可。

Copy

 input_data = {
        "engine": "google_maps",
        "q": "coffee",
        "type": "search",
        "ll": "@40.712776,-74.005974.14z",
        "start": "20",
    }

我们建议最多100个(第6页),这与Google Maps网络应用程序的行为相同;超过此限制,结果可能会重复或丢失。


如何将Google Maps结果导出到CSV?

如果您需要Google Maps结果中的数据,您可以添加以下代码。此代码示例向您展示如何将所有local_results存储在CSV中。在此示例中,我们保存了标题、地址、电话和网站。

result = response.json()
local_results = result['local_results']

with open('maps-results.csv', 'w', newline='') as csvfile:
    csv_writer = csv.writer(csvfile)

    # 写入标题
    csv_writer.writerow(["Title", "Address", "Phone Number", "Website"])

    # 写入数据
    for result in local_results:
        csv_writer.writerow(
            [result["title"], result["address"], result["phone"], result["website"] if "website" in result else ""])

print('Done writing to CSV file.')

如何抓取Google Maps评论

Scrapeless还提供一个评论API,用于获取有关特定位置评论的详细信息。要使用此功能,您需要获取place_id或data_id。

只需修改input_data中的参数,即可获得与您提供的参数相对应的API结果。这种方法使您可以高效地抓取Google Maps评论,利用Scrapeless API的强大功能。

input_data = {
    "engine": "google_maps_reviews",
    "data_id": "0x89c259af336b3341:0xa4969e07ce3108de",
}

**注意:**data_id或place_id参数将在local_results或place_results结果中返回。

结果将包括评论链接、评分、用户详细信息、摘要和点赞数。您可以使用sort_by参数按评分从高到低排序。


如何分页显示评论

如何分页显示评论API响应中的可用值以获取所有评论数据?请参见下文。

  1. 获取上述评论API响应中的next_page_token:

  1. 组装请求参数以启动请求,我们将向您返回评论的下一页:
input_data = {
    "engine": "google_maps_reviews",
    "data_id": "0x89c259af336b3341:0xa4969e07ce3108de",
    "next_page_token": "CAESY0NBRVFDQnBFUTJwRlNVRlNTWEJEWjI5QlVEZGZURUZMUVU5ZlgxOWZSV2hEU21OSVRrMXBiR0Z4ZG1wNWNqRjJhMEZCUVVGQlIyZHVPVEpSWTBOaGQxWm5abmRuV1VGRFNVRQ=="
}

Scrapeless还可以为您抓取哪些其他数据

Scrapeless为您提供了多种抓取场景,包括上面显示的本地和位置结果。此外,我们还提供多个API,例如贡献者、路线API、照片API等。对于不同的API,您只需要构建不同的参数:

这里,以爬取路线API为例。您只需要更改上面代码中input_data中的参数即可。结果将包括距离、时间、每次旅程的详细信息等。

Copy

input_data = {
    "engine": "google_maps_directions",
    "start_addr": "Austin-Bergstrom International Airport",
    "end_addr": "5540 N Lamar Blvd, Austin, TX 78756, USA",
}

此外,您可以使用travel_mode参数来选择出行方式:

以上是如何抓取Google Maps数据和地点评论的方法。希望对您有所帮助。


结论

抓取Google Maps数据和评论可以成为非常有效的工具。但是,如果没有合适的工具,这可能是一项技术挑战,经常会出现CAPTCHA、IP封锁和复杂的数据提取等问题。

使用Scrapeless,您可以绕过常见的抓取障碍并获取所有类型的信息。

立即注册并获得100,000次免费请求,并通过加入Discord社区获得免费积分。

### 使用Python实现谷歌地图数据的网络爬虫 为了实现从谷歌地图获取大量瓦片地图数据的任务,可以采用`urllib.request`库进行图片下载操作。此方法适用于已知的地图切片URL地址的情况[^1]。 ```python import os from urllib.request import urlretrieve def download_tile(image_url, save_path): try: if not os.path.exists(save_path): urlretrieve(image_url, save_path) print(f"Downloaded {image_url} to {save_path}") else: print(f"{save_path} already exists.") except Exception as e: print(f"Failed to download {image_url}. Error: {e}") # Example usage of the function with hypothetical URL and path. download_tile('http://example.com/tile.png', './data/tile_001.png') ``` 考虑到国内访问Google服务存在限制,在编写此类爬虫时应当考虑使用代理服务器来绕过这一障碍[^3]。同时需要注意的是,由于Google的服务条款严格禁止未经许可的大规模数据抓取行为,因此建议仅用于学习目的的小范围测试,并遵守robots.txt协议中的规定。 另外值得注意的一点是,频繁请求可能导致IP被封锁,故而应适当控制请求频率以降低风险。可以通过加入随机等待时间间隔的方式来模拟人类用户的浏览习惯,从而减少触发自动化检测机制的可能性。 最后提醒一点,虽然理论上讲凡是能在浏览器中看到的信息都可以被抓取下来,但实际上很多网站都部署了复杂的反爬策略,这就意味着开发者需要不断调整自己的工具技术手段以便更好地适应变化着的目标环境[^4]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值