以下是基于Python和C++开发PCB板零件识别APP的技术方案,结合计算机视觉与工业检测需求,打造**高精度电子制造辅助系统**:
---
### **一、目标用户群体**
1. **SMT产线工程师**:快速识别错件/反件/漏件
2. **电子维修技师**:BOM表自动比对与元件定位
3. **PCB设计师**:设计规则验证(焊盘尺寸合规性)
4. **质检部门**:生成IPC-A-610标准检测报告
---
### **二、核心功能设计**
#### **1. 多模态识别引擎**
```mermaid
graph TD
A[光学成像] --> B[预处理]
B --> C[特征提取]
C --> D{识别策略}
D --> E[传统算法]
D --> F[深度学习]
E & F --> G[决策融合]
```
- **C++高性能层**:
- 实时图像增强(Halcon工业视觉库集成)
- 亚像素边缘检测(OpenCV CUDA加速)
- **Python智能层**:
- YOLOv8元件检测模型(PyTorch量化部署)
- OCR识别元件标识(PaddleOCR+自定义字符集)
#### **2. 精密检测功能**
| 检测类型 | 技术方案 | 精度指标