基于自回归差分移动平均模型时间序列预测matlab程序

基于自回归差分移动平均模型时间序列预测matlab程序
可解决非平稳数据
可实现+多步预测+对未来的数据实现预测+评价指标包括mae+mape+rmse+r2

在这里插入图片描述
基于 自回归差分移动平均模型(ARIMA, AutoRegressive Integrated Moving Average) 的时间序列预测 MATLAB 程序。ARIMA 模型广泛应用于时间序列分析和预测,适用于具有趋势和季节性的时间序列数据。


程序说明

  1. ARIMA 模型简介

    • ARIMA(p, d, q) 模型由三部分组成:
      • p:自回归项的阶数。
      • d:差分次数(使序列平稳)。
      • q:移动平均项的阶数。
    • 该模型适用于非平稳时间序列数据的预测。
  2. 程序功能

    • 使用 MATLAB 的 arima 函数构建 ARIMA 模型。
    • 对给定的时间序列进行拟合和预测。
    • 可视化原始数据与预测结果。
  3. 适用场景

    • 股票价格预测。
    • 销售额预测。
    • 气象数据预测等。

在这里插入图片描述

MATLAB 代码

% 基于 ARIMA 模型的时间序列预测
clc;
clear;

%% 参数定义
% 示例时间序列数据(可以替换为实际数据)
data = [100, 105, 110, 115, 120, 128, 135, 142, 150, 160, ...
        170, 180, 190, 200, 210, 225, 240, 255, 270, 285];

% 数据分割
trainRatio = 0.8; % 训练集比例
n = length(data);
trainData = data(1:floor(n * trainRatio)); % 训练集
testData = data(floor(n * trainRatio)+1:end); % 测试集

% ARIMA 模型参数
p = 1; % 自回归阶数
d = 1; % 差分次数
q = 1; % 移动平均阶数

%% 构建 ARIMA 模型
model = arima(p, d, q); % 定义 ARIMA 模型
fitModel = estimate(model, trainData'); % 拟合模型

%% 预测
numSteps = length(testData); % 预测步数
[forecast, forecastCI] = forecast(fitModel, numSteps, 'Y0', trainData');

%% 绘图
figure;
plot(1:n, data, 'b', 'LineWidth', 1.5); hold on;
plot((floor(n * trainRatio)+1):n, forecast, 'r--', 'LineWidth', 1.5);
plot((floor(n * trainRatio)+1):n, forecastCI(:, 1), 'k:', 'LineWidth', 1);
plot((floor(n * trainRatio)+1):n, forecastCI(:, 2), 'k:', 'LineWidth', 1);
xlabel('时间');
ylabel('值');
title('ARIMA 时间序列预测');
legend('原始数据', '预测值', '预测置信区间');
grid on;

%% 输出结果
disp('预测值:');
disp(forecast');
disp('真实值:');
disp(testData');
disp('预测误差:');
disp(mean(abs(forecast' - testData)));

在这里插入图片描述

代码说明

  1. 时间序列数据

    • 示例中使用了一个简单的递增序列作为时间序列数据,用户可以替换为实际数据(如股票价格、销售额等)。
  2. 模型构建

    • 使用 arima 函数定义 ARIMA 模型。
    • 使用 estimate 函数对训练数据进行模型拟合。
  3. 预测

    • 使用 forecast 函数生成未来若干步的预测值。
    • 同时返回预测值的置信区间。
  4. 可视化

    • 绘制原始数据、预测值和置信区间。
    • 通过对比预测值和真实值评估模型性能。

示例输出

运行代码后,将显示如下内容:

  1. 原始时间序列数据与预测值的对比图。
  2. 预测值及其置信区间。
  3. 平均绝对误差(MAE),用于评估预测精度。

注意事项

  1. 参数选择

    • ARIMA 模型的关键是选择合适的 (p, d, q) 参数。
    • 可以使用 ACF 和 PACF 图辅助确定 pq,通过单位根检验确定 d
  2. 数据预处理

    • 如果时间序列存在明显的季节性,可以扩展为 SARIMA(季节性 ARIMA)模型。
    • 对于非平稳数据,可以通过差分使其平稳。
  3. 扩展应用

    • 结合外部变量(如天气、节假日)构建 ARIMAX 模型。
    • 应用于多维时间序列预测(如 VAR 模型)。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值