基于Python深度学习花卉识别系统
Python 代码实现了一个功能完整且具有一定实用性的花卉识别系统,它将深度学习技术与图形用户界面(GUI)相结合,为用户提供了便捷的花卉识别体验。以下是对代码的详细概述:
整体功能概述
代码的核心目的是构建一个能够识别花卉种类的系统。它借助 TensorFlow 深度学习框架进行模型的训练与预测,同时利用 Tkinter 和 ttkbootstrap 库创建了一个直观的图形用户界面,使用户可以方便地上传花卉图片并获取识别结果。
具体实现步骤
导入必要的库:代码开头导入了多个关键库,涵盖了深度学习相关的 TensorFlow 及其数据集模块、用于图像处理的 Pillow 库、用于创建 GUI 的 Tkinter 和 ttkbootstrap 库,以及用于数值计算的 NumPy 库和文件操作的 os 库,为后续的功能实现奠定基础。
加载数据集信息:通过定义 load_dataset_info 函数,从 tensorflow_datasets 中加载 tf_flowers 数据集,并获取数据集的详细信息,如类别数量等,这些信息将在后续模型构建和训练中发挥重要作用。
模型加载或训练:代码会首先检查本地是否存在已保存的模型文件 flower_model.h5。若存在,则直接加载该模型;若不存在,则进行一系列的数据处理和模型训练操作。具体包括数据预处理,将图像调整为统一大小并进行归一化处理;使用数据增强技术,如随机翻转和旋转,以增加数据的多样性;构建卷积神经网络模型,包含卷积层、池化层和全连接层;编译模型并进行训练,最后将训练好的模型保存到本地。
定义中英文花卉名称映射:为了给用户提供更友好的识别结果,代码创建了一个中英文花卉名称映射字典,将英文的花卉名称转换为中文,方便用户理解。
创建 GUI 类:定义了 FlowerRecognitionGUI 类,用于创建和管理图形用户界面。在类的初始化方法中,设置了窗口的标题、大小,并创建了各种 GUI 组件,如标题标签、提示标签、选择图片按钮、图片显示区域和结果显示区域。
实现图片选择和识别功能:在 select_image 方法中,允许用户通过文件对话框选择花卉图片。选择图片后,代码会对图片进行预处理,将其调整为模型所需的大小并进行归一化。然后使用加载或训练好的模型对图片进行预测,获取预测结果和置信度,并将结果转换为中文显示在界面上。如果处理过程中出现错误,会弹出错误提示框。
启动主窗口:最后,创建了一个 ttk.Window 对象,并实例化 FlowerRecognitionGUI 类,启动主窗口的事件循环,使 GUI 能够响应用户的操作。
可以识别向日葵,郁金香,玫瑰,雏菊,蒲公英五中花朵。
数据集概述
tf_flowers 数据集包含了多种不同种类花卉的图像,主要用于图像分类任务。该数据集为研究人员和开发者提供了一个方便的资源,用于训练和评估花卉识别模型。
数据内容
类别数量:该数据集包含 5 个不同的花卉类别,分别是雏菊(daisy)、蒲公英(dandelion)、玫瑰(roses)、向日葵(sunflowers)和郁金香(tulips)。
图像数量:大约有 3670 张花卉图像。
图像特点:这些图像具有不同的分辨率、光照条件和拍摄角度,增加了模型训练的挑战性和泛化能力。