BP神经网络回归+预测Matlab建模代码

BP神经网络回归+预测Matlab建模代码
使用该程序可以:(1)使用BP神经网络对多个自变量和单个因变量进行拟合(2)提供四种性能评价指标(MSE,MAE,SAE,SSE),以测试集指定的性能评价指标最小为原则自动调参以防止过拟合(3)分训练集和测试集显示拟合图、(4)建模后进行预测并画图

本程序的所有步骤公开透明,并支持对不同的隐藏层数量+每层不同的隐藏神经元进行自动调参并报告最优参数:
同时,本程序支持对以下参数进行调整
(1)训练函数,包含12种训练算法
(2)传递函数,包含14种传递函数
(3)性能评价指标,包含4种性能评价指标
(4)使用并行计算


BP(Backpropagation)神经网络是一种广泛应用于回归和分类任务的前馈神经网络。在MATLAB中,可以使用 Neural Network Toolbox来构建、训练和应用BP神经网络进行回归和预测。

以下是一个完整的示例代码,展示了如何使用BP神经网络进行回归分析,并对未来的数据进行预测。我们将包括数据加载、模型训练、模型评估以及预测步骤,并附有详细的注释。

示例代码

1. 数据准备

假设我们有一个时间序列数据文件(例如CSV格式),其中包含输入特征和目标变量。

function bp_neural_network_regression_example()
    % 加载数据
    data = readtable('regression_data.csv'); % 替换为你的数据文件名
    inputs = data{:, 1:end-1}; % 输入特征
    targets = data{:, end}; % 目标变量

    % 数据归一化处理
    [inputs, input_min, input_max] = normalize_data(inputs);
    [targets, target_min, target_max] = normalize_data(targets);

    % 划分训练集和测试集
    train_ratio = 0.8;
    num_samples = size(inputs, 1);
    train_indices = randperm(num_samples, floor(train_ratio * num_samples));
    test_indices = setdiff(1:num_samples, train_indices);

    train_inputs = inputs(train_indices, :);
    train_targets = targets(train_indices, :);
    test_inputs = inputs(test_indices, :);
    test_targets = targets(test_indices, :);

    % 构建BP神经网络
    hidden_layer_size = 10; % 隐藏层神经元数量
    net = feedforwardnet(hidden_layer_size);

    % 设置训练参数
    net.trainFcn = 'trainlm'; % 使用Levenberg-Marquardt算法
    net.divideParam.trainRatio = train_ratio;
    net.divideParam.valRatio = 0.1; % 验证集比例
    net.divideParam.testRatio = 0.1; % 测试集比例

    % 训练神经网络
    [net, tr] = train(net, train_inputs', train_targets');

    % 可视化训练过程
    figure;
    plotperform(tr);
    title('Training Performance');

    % 在测试集上进行评估
    predicted_test_targets = net(test_inputs')';
    predicted_test_targets = denormalize_data(predicted_test_targets, target_min, target_max);
    actual_test_targets = denormalize_data(test_targets, target_min, target_max);

    % 计算均方误差(MSE)
    mse_value = mse(actual_test_targets - predicted_test_targets);
    disp(['Mean Squared Error on Test Set: ', num2str(mse_value)]);

    % 可视化预测结果与实际值对比
    figure;
    subplot(2,1,1);
    plot(actual_test_targets, 'b');
    hold on;
    plot(predicted_test_targets, 'r--');
    legend('Actual Values', 'Predicted Values');
    title('Test Set Predictions vs Actual Values');
    xlabel('Sample Index');
    ylabel('Value');
    hold off;

    subplot(2,1,2);
    errors = actual_test_targets - predicted_test_targets;
    plot(errors, 'g');
    title('Prediction Errors');
    xlabel('Sample Index');
    ylabel('Error');

    % 进行未来预测
    future_inputs = generate_future_inputs(size(test_inputs, 1)); % 生成未来输入数据
    future_inputs = normalize_data(future_inputs, input_min, input_max); % 归一化处理
    future_predictions = net(future_inputs')';
    future_predictions = denormalize_data(future_predictions, target_min, target_max); % 反归一化

    % 可视化未来预测结果
    figure;
    plot(future_predictions, 'r');
    title('Future Predictions');
    xlabel('Sample Index');
    ylabel('Predicted Value');
end

function [normalized_data, min_val, max_val] = normalize_data(data, min_val, max_val)
    if nargin < 3
        min_val = min(data, [], 'all');
        max_val = max(data, [], 'all');
    end
    normalized_data = (data - min_val) / (max_val - min_val);
end

function denormalized_data = denormalize_data(normalized_data, min_val, max_val)
    denormalized_data = normalized_data * (max_val - min_val) + min_val;
end

function future_inputs = generate_future_inputs(num_samples)
    % 生成未来输入数据,这里以随机数为例
    rng(0); % 设置随机种子以确保结果可重复
    future_inputs = rand(num_samples, 1); % 假设只有一个输入特征
end

代码解释

主函数 bp_neural_network_regression_example
  • 加载数据:从CSV文件中读取输入特征和目标变量。
  • 数据归一化处理:将输入特征和目标变量归一化到[0, 1]区间,便于神经网络训练。
  • 划分训练集和测试集:将数据划分为训练集和测试集,通常80%用于训练,20%用于测试。
  • 构建BP神经网络:使用 feedforwardnet 函数创建一个前馈神经网络,并设置隐藏层神经元数量。
  • 设置训练参数:选择训练算法(如Levenberg-Marquardt算法),并设置训练集、验证集和测试集的比例。
  • 训练神经网络:使用训练集数据训练神经网络,并可视化训练过程中的性能。
  • 在测试集上进行评估:计算测试集上的预测值,并反归一化后与实际值进行比较,计算均方误差(MSE)。
  • 可视化预测结果与实际值对比:绘制实际值和预测值的对比图,以及预测误差图。
  • 进行未来预测:生成未来输入数据,进行预测并反归一化,最后可视化未来预测结果。
辅助函数 normalize_data
  • 数据归一化处理:将输入数据归一化到[0, 1]区间,并返回最小值和最大值以便后续反归一化。
辅助函数 denormalize_data
  • 反归一化处理:将归一化后的数据还原到原始尺度。
辅助函数 generate_future_inputs
  • 生成未来输入数据:生成未来输入数据,这里以随机数为例。可以根据具体需求生成相应的输入数据。

注意事项

  1. 数据预处理:确保输入数据是数值型且无缺失值。归一化处理有助于提高模型的收敛速度和稳定性。
  2. 模型复杂度:根据数据的特点选择合适的隐藏层神经元数量。过多或过少的神经元可能导致过拟合或欠拟合。
  3. 训练参数:不同的训练算法有不同的优缺点。Levenberg-Marquardt算法通常适用于中小型数据集,但对于大型数据集可能需要较长的训练时间。
  4. 模型评估:除了均方误差(MSE)外,还可以使用其他评估指标(如R²值)来评估模型的性能。
  5. 预测应用:在进行未来预测时,确保生成的输入数据与训练数据具有相同的特征和分布。

这个示例代码提供了一个基本框架,你可以根据具体需求进一步优化和扩展。希望这能帮助你理解如何在MATLAB中实现BP神经网络进行回归分析和预测。
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值