BP神经网络回归+预测Matlab建模代码
使用该程序可以:(1)使用BP神经网络对多个自变量和单个因变量进行拟合(2)提供四种性能评价指标(MSE,MAE,SAE,SSE),以测试集指定的性能评价指标最小为原则自动调参以防止过拟合(3)分训练集和测试集显示拟合图、(4)建模后进行预测并画图
本程序的所有步骤公开透明,并支持对不同的隐藏层数量+每层不同的隐藏神经元进行自动调参并报告最优参数:
同时,本程序支持对以下参数进行调整
(1)训练函数,包含12种训练算法
(2)传递函数,包含14种传递函数
(3)性能评价指标,包含4种性能评价指标
(4)使用并行计算
文章目录
BP(Backpropagation)神经网络是一种广泛应用于回归和分类任务的前馈神经网络。在MATLAB中,可以使用
Neural Network Toolbox
来构建、训练和应用BP神经网络进行回归和预测。
以下是一个完整的示例代码,展示了如何使用BP神经网络进行回归分析,并对未来的数据进行预测。我们将包括数据加载、模型训练、模型评估以及预测步骤,并附有详细的注释。
示例代码
1. 数据准备
假设我们有一个时间序列数据文件(例如CSV格式),其中包含输入特征和目标变量。
function bp_neural_network_regression_example()
% 加载数据
data = readtable('regression_data.csv'); % 替换为你的数据文件名
inputs = data{:, 1:end-1}; % 输入特征
targets = data{:, end}; % 目标变量
% 数据归一化处理
[inputs, input_min, input_max] = normalize_data(inputs);
[targets, target_min, target_max] = normalize_data(targets);
% 划分训练集和测试集
train_ratio = 0.8;
num_samples = size(inputs, 1);
train_indices = randperm(num_samples, floor(train_ratio * num_samples));
test_indices = setdiff(1:num_samples, train_indices);
train_inputs = inputs(train_indices, :);
train_targets = targets(train_indices, :);
test_inputs = inputs(test_indices, :);
test_targets = targets(test_indices, :);
% 构建BP神经网络
hidden_layer_size = 10; % 隐藏层神经元数量
net = feedforwardnet(hidden_layer_size);
% 设置训练参数
net.trainFcn = 'trainlm'; % 使用Levenberg-Marquardt算法
net.divideParam.trainRatio = train_ratio;
net.divideParam.valRatio = 0.1; % 验证集比例
net.divideParam.testRatio = 0.1; % 测试集比例
% 训练神经网络
[net, tr] = train(net, train_inputs', train_targets');
% 可视化训练过程
figure;
plotperform(tr);
title('Training Performance');
% 在测试集上进行评估
predicted_test_targets = net(test_inputs')';
predicted_test_targets = denormalize_data(predicted_test_targets, target_min, target_max);
actual_test_targets = denormalize_data(test_targets, target_min, target_max);
% 计算均方误差(MSE)
mse_value = mse(actual_test_targets - predicted_test_targets);
disp(['Mean Squared Error on Test Set: ', num2str(mse_value)]);
% 可视化预测结果与实际值对比
figure;
subplot(2,1,1);
plot(actual_test_targets, 'b');
hold on;
plot(predicted_test_targets, 'r--');
legend('Actual Values', 'Predicted Values');
title('Test Set Predictions vs Actual Values');
xlabel('Sample Index');
ylabel('Value');
hold off;
subplot(2,1,2);
errors = actual_test_targets - predicted_test_targets;
plot(errors, 'g');
title('Prediction Errors');
xlabel('Sample Index');
ylabel('Error');
% 进行未来预测
future_inputs = generate_future_inputs(size(test_inputs, 1)); % 生成未来输入数据
future_inputs = normalize_data(future_inputs, input_min, input_max); % 归一化处理
future_predictions = net(future_inputs')';
future_predictions = denormalize_data(future_predictions, target_min, target_max); % 反归一化
% 可视化未来预测结果
figure;
plot(future_predictions, 'r');
title('Future Predictions');
xlabel('Sample Index');
ylabel('Predicted Value');
end
function [normalized_data, min_val, max_val] = normalize_data(data, min_val, max_val)
if nargin < 3
min_val = min(data, [], 'all');
max_val = max(data, [], 'all');
end
normalized_data = (data - min_val) / (max_val - min_val);
end
function denormalized_data = denormalize_data(normalized_data, min_val, max_val)
denormalized_data = normalized_data * (max_val - min_val) + min_val;
end
function future_inputs = generate_future_inputs(num_samples)
% 生成未来输入数据,这里以随机数为例
rng(0); % 设置随机种子以确保结果可重复
future_inputs = rand(num_samples, 1); % 假设只有一个输入特征
end
代码解释
主函数 bp_neural_network_regression_example
- 加载数据:从CSV文件中读取输入特征和目标变量。
- 数据归一化处理:将输入特征和目标变量归一化到[0, 1]区间,便于神经网络训练。
- 划分训练集和测试集:将数据划分为训练集和测试集,通常80%用于训练,20%用于测试。
- 构建BP神经网络:使用
feedforwardnet
函数创建一个前馈神经网络,并设置隐藏层神经元数量。 - 设置训练参数:选择训练算法(如Levenberg-Marquardt算法),并设置训练集、验证集和测试集的比例。
- 训练神经网络:使用训练集数据训练神经网络,并可视化训练过程中的性能。
- 在测试集上进行评估:计算测试集上的预测值,并反归一化后与实际值进行比较,计算均方误差(MSE)。
- 可视化预测结果与实际值对比:绘制实际值和预测值的对比图,以及预测误差图。
- 进行未来预测:生成未来输入数据,进行预测并反归一化,最后可视化未来预测结果。
辅助函数 normalize_data
- 数据归一化处理:将输入数据归一化到[0, 1]区间,并返回最小值和最大值以便后续反归一化。
辅助函数 denormalize_data
- 反归一化处理:将归一化后的数据还原到原始尺度。
辅助函数 generate_future_inputs
- 生成未来输入数据:生成未来输入数据,这里以随机数为例。可以根据具体需求生成相应的输入数据。
注意事项
- 数据预处理:确保输入数据是数值型且无缺失值。归一化处理有助于提高模型的收敛速度和稳定性。
- 模型复杂度:根据数据的特点选择合适的隐藏层神经元数量。过多或过少的神经元可能导致过拟合或欠拟合。
- 训练参数:不同的训练算法有不同的优缺点。Levenberg-Marquardt算法通常适用于中小型数据集,但对于大型数据集可能需要较长的训练时间。
- 模型评估:除了均方误差(MSE)外,还可以使用其他评估指标(如R²值)来评估模型的性能。
- 预测应用:在进行未来预测时,确保生成的输入数据与训练数据具有相同的特征和分布。
这个示例代码提供了一个基本框架,你可以根据具体需求进一步优化和扩展。希望这能帮助你理解如何在MATLAB中实现BP神经网络进行回归分析和预测。