核心内容
大语言模型,就像是电脑的大脑,它能理解和生成人类的语言。这些模型通过分析大量的文本数据来学习语言的规律,然后就能用来回答问题、写文章,甚至是创作诗歌。想象一下,你有一个助手,它不仅能听懂你的问题,还能给出既聪明又准确的回答。
核心概念
决策需求
概念名词:决策需求就像是你在面临选择时,需要有人帮你分析哪个选项更好。比如,你在选择大学时,可能会考虑学校的排名、地理位置、专业优势等因素。
示例说明:假设你要在两个手机应用之间做出选择,一个功能全面但耗电快,另一个功能简单但省电。你就需要一个助手来帮你分析,哪个应用更适合你的需求。
DeepSeek实战:
用户提问:我需要在两个手机应用中做出选择,一个功能全面但耗电快,另一个功能简单但省电。请帮我分析哪个更适合我,考虑到我的使用习惯和电池寿命。
DeepSeek回答:
功能全面但耗电快的应用:
- 适合需要多功能和高效完成的用户。
- 电池寿命较短,可能需要频繁充电。
- 适合有备用电源或充电条件的环境。
功能简单但省电的应用:
- 适合基本需求,操作简单。
- 电池寿命更长,减少充电次数。
- 适合长时间外出或充电不便的环境。
选择建议:
- 如果你需要多功能且经常有充电条件,选功能全面的应用。
- 如果注重电池寿命且需求简单,选功能简单但省电的应用。
分析需求
概念名词:分析需求就是你想要深入了解某个问题的所有方面,比如你想了解一个历史事件的起因、过程和影响。
示例说明:比如你想知道为什么恐龙会灭绝,你就需要分析当时的环境变化、气候变化等因素。
DeepSeek实战:
用户提问:分析近三年新能源汽车销量数据(附CSV),说明增长趋势与政策关联性,并预测2025年市占率,需使用ARIMA模型并解释参数选择依据。
DeepSeek回答:
近三年新能源汽车销量持续增长,年均增长率超30%,主要受政策支持(如补贴、免购置税)驱动。
使用ARIMA模型预测2025年市占率,参数选择(p,d,q)=(2,1,1),基于数据平稳性和自相关图分析。
预测结果显示,2025年新能源汽车市占率将达40%-45%。
创造性需求
概念名词:创造性需求就是你想要创造新的东西,比如设计一个新的产品或者解决一个新问题的方法。
示例说明:比如你要设计一款新的运动鞋,你需要考虑它的舒适度、耐用性以及外观是否吸引人。
DeepSeek实战:
用户提问:设计一款智能家居产品,要求解决独居老人安全问题,结合传感器网络和AI预警,并提供三种不同技术路线的原型草图说明。
DeepSeek回答:
产品名称:SafeElder智能家居系统
主要功能:
- 实时监测老人活动状态
- AI分析异常行为
- 自动报警与通知
技术路线一:
- 草图说明: 基于Wi-Fi传感器网络+摄像头
- 特点: 利用Wi-Fi信号监测老人位置,摄像头AI分析姿态
技术路线二:
- 草图说明: 基于ZigBee传感器网络+可穿戴设备
- 特点: ZigBee低功耗组网,可穿戴设备监测心率等生理数据
技术路线三:
- 草图说明: 基于LoRa传感器网络+智能家居设备
- 特点: LoRa远距离传输,整合智能家居设备,监测环境及活动
共同特点:
- 均具备AI预警功能
- 支持远程报警通知
- 针对独居老人安全设计
验证性需求
概念名词:验证性需求就是你想要确认某个说法或者结论是否正确,比如验证一个科学实验的结果。
示例说明:比如你听说吃巧克力能帮助提高记忆力,你就需要通过实验来验证这个说法是否真实。
DeepSeek实战:
用户提问:以下是某论文结论:“神经网络模型A优于传统方法B”。请验证实验数据是否支持该结论;检查对照组设置是否存在偏差;重新计算p值并判断显著性。
DeepSeek回答:
实验数据支持“神经网络模型A优于传统方法B”的结论。
对照组设置合理,无明显偏差。
重新计算p值为0.003,具有显著性(p < 0.05)。
执行需求
概念名词:执行需求就是你已经有了一个计划或者想法,需要将其付诸实践,比如将一个想法转化为实际的产品或者服务。
示例说明:比如你要将一个手工艺品的设计方案制作成实物,你需要考虑材料的选择、制作的步骤等。
DeepSeek实战:
用户提问:将以下C语言代码转换为Python,要求保持时间复杂度不变,使用numpy优化数组操作,并输出带时间测试案例的完整代码。
DeepSeek回答:
import numpy as np
import time
# C Code: int arr[10]; for (int i = 0; i < 10; i++) { arr[i] = i * 2; }
def c_to_python():
> arr = np.arange(0, 20, 2) # Equivalent to i * 2 for i in range(10)
> return arr
# Time Test
> start = time.time()
> result = c_to_python()
> end = time.time()
> print(result)
> print(f""Time taken: {end - start} seconds"")
DeepSeek实战:
用户提问:分析为降低物流成本,现有两种方案:①自建区域仓库(初期投入高,长期成本低)②与第三方合作(按需付费,灵活性高)。请根据ROI计算模型,对比5年内的总成本并推荐最优解。
DeepSeek回答:
方案对比
方案①:自建区域仓库
- 初期投入:高
- 长期成本:低
- 5年总成本:$1,000,000(初期)+ $200,000/年 × 5 = $2,000,000
方案②:与第三方合作
- 按需付费:高灵活性
- 5年总成本:$500,000/年 × 5 = $2,500,000
ROI分析
方案 5年总成本 成本节约 自建仓库 $2,000,000 $500,000 第三方合作 $2,500,000 - 推荐方案
自建区域仓库,5年内总成本更低,节约$500,000。
本文参考文献:《这就是DeepSeek:普通人如何抓住AI红利》(人民邮电出版社20250301)