4.7/Q1,GBD数据库最新文章解读

文章题目:Burden of non-COVID-19 lower respiratory infections in China (1990-2021): a global burden of disease study analysis

 

DOI:10.1186/s12931-025-03197-7

 

中文标题:中国非 COVID-19 下呼吸道感染负担(1990-2021 年):全球疾病负担研究分析

 

发表杂志:Respir Res

 

影响因子:1区,IF=4.7

 

发表时间:2025年4月

 

今天给大家分享一篇在2025年4月发表在《Respir Res》(1区,IF=4.7)的文章。本研究旨在根据2021 年全球疾病负担 (GBD) 研究,探索 1990 年至 2021 年人们非 COVID-19 LRI 负担和趋势的全国估计值。

 

研究方法:我们使用2021 年 GBD 研究的估计数据估计了中国的死亡率、发病率、残疾调整生命年 (DALYs)、风险因素和 LRI 的病因归因,不包括 COVID-19。死亡率、发病率、DALYs、风险因素和病因按性别和年龄分层。使用估计的年度百分比变化来评估趋势。

Table&Figure

 

结果解读:2021 年,估计有 206930.22 人死亡(95% 不确定性区间 [UI]:171260.88-251990.47),全年龄死亡率为每 100,000 人 14.54 人死亡(95% UI:12.04-17.71)。与 2019 年相比,全年龄死亡率增加了 3.60%。分析 1990 年至 2021 年的风险因素,我们发现归因于烟草的 DALY 百分比从 7.44%(95% UI:1.26-15.72%)增加到 22.14%(95% UI:3.28-38.41%),归因于环境颗粒物污染的比例从 19.84%(95% UI:8.79-30.20%)增加到 32.72%(95% UI:22.78-41.77%)。从 1990 年到 2021 年,LRI 导致死亡的主要原因仍然是肺炎链球菌。然而,病毒感染的比例有所下降。与 2019 年相比,2021 年流感死亡比例从 13.03 下降到 2.70%,RSV 死亡比例从 2.21 下降到 0.41%。

 

结论:在中国,在降低LRI 死亡率方面取得了实质性进展,但从 1990 年到 2021 年,LRI 在中国仍然是一个威胁。在 COVID-19 大流行期间,流感和 RSV 导致的死亡率有所下降。针对 LRI 主要病原体的有效疫苗和治疗方法很重要。 

 

大家在科研路上,可以借鉴这种研究方法,为自己的课题添砖加瓦。万层高楼平底起,一起加油呀!

### GBD 数据库介绍 GBD 文件地理数据库是一种用于存储空间数据和属性数据的容器,支持复杂的数据结构以及丰富的地理处理功能。为了访问这种类型的地理数据库中的要素类和其他对象,通常依赖于特定驱动器的支持[^1]。 ### 使用方法 对于想要读取或写入 GDB 文件的操作而言,GDAL 提供了解析该种格式的能力。具体来说: - **安装必要的驱动**:确保已经安装了 FileGDB 或 OpenFileGDB 驱动来实现对 GDB 的读取能力。 - **加载并操作数据集**:通过 GDAL 库可以轻松打开 .gdb 文件夹形式存在的地理数据库,并对其进行查询、遍历等基本操作。 ```python from osgeo import ogr, gdal # 注册所有可用驱动 gdal.AllRegister() driver = ogr.GetDriverByName('OpenFileGDB') # 或者 'FileGDB' dataSource = driver.Open("path_to_your_gdb_file.gdb", 0) if dataSource is None: print("无法打开指定路径下的 GDB 文件") else: layerNames = [layer.GetName() for layer in dataSource] print(f"GDB 中包含图层: {', '.join(layerNames)}") ``` 上述代码展示了如何利用 Python 和 GDAL/ogr 打开一个 GDB 文件,并打印其中所含有的各个图层名称。 ### 应用场景 GBD 数据库广泛应用于 GIS( Geographic Information System 地理信息系统)领域内各种项目当中,比如城市规划、环境保护监测、资源管理等方面。由于其能够高效地管理和分析大规模的空间数据集合,在涉及到多维度时空数据分析的任务里表现尤为出色。 #### 特定案例展示 假设有一个名为 `city_planning` 的 GBD 文件地理数据库包含了多个关于某座城市的基础设施建设情况的相关信息表单(如道路网路分布、公共设施位置)。借助 GDAL 工具包提供的接口函数,开发者们便可以在不改变原有数据格式的前提下完成对该组数据的各种定制化需求处理工作,例如提取某些特定区域内的兴趣点列表或将不同来源的地图资料融合在一起形成新的专题地图产品。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值