3.6/Q1,GBD数据库最新文章解读

文章题目:Rising global burden of common gynecological diseases in women of childbearing age from 1990 to 2021: an update from the Global Burden of Disease Study 2021

 

DOI:10.1186/s12978-025-02013-1

 

中文标题:1990 年至 2021 年育龄妇女常见妇科疾病的全球负担增加:2021 年全球疾病负担研究的更新

 

发表杂志:Reprod Health

        

影响因子:1区,IF=3.6

        

发表时间:2025年4月

 

今天给大家分享一篇在2025年4月发表在《Reprod Health》(1区,IF=3.6)的文章。本研究的目的是根据全球疾病负担(GBD) 数据,提供 1990 年至 2021 年全球 WCBA 妇科疾病的新细节。

 

研究方法:利用GBD 2021 的数据,我们按社会经济发展指数 (SDI) 、年龄、年份和 WCBA 中的位置分析了 13 种妇科疾病的残疾调整生命年 (DALY) 、死亡、发病率和患病率。年龄标准化比率用于比较不同时期和地点的负担。使用 Joinpoint 回归分析评估了 1990 年至 2021 年的时间趋势,贝叶斯年龄-时期-队列 (BAPC) 模型预测了到 2031 年的疾病负担,Nordpred 模型对预测结果进行了敏感性分析,验证了研究结果的可靠性。

Table&Figure

 

结果解读:从1990 年到 2021 年,妇科联合疾病 (CGD) 的年龄标准化 DALY 率 (ASDR) 和死亡率 (ASMR) 在 WCBA 中增加了 0.28% (95% CI 0.19 至 0.36) 和 0.53% (95% CI 0.25 至 0.82)。此外,预测显示未来十年呈下降趋势,ASDR 和 ASMR 分别下降了 11.06% 和 25.23%。值得注意的是,HIV/AIDS、多囊卵巢综合征 (PCOS)、不孕症、经前综合征 (PMS) 是 CGD ASDR 增加的主要驱动因素。2021 年,艾滋病毒/艾滋病(1638 万)、PMS(743 万)和宫颈癌(418 万)在 WCBA 的全球 DALY 绝对数量中位居榜首。CGDs 负荷与 和 SDI 呈负相关。15-24 岁的女性的 CGD 负担增加最为显着,凸显了它对年轻女性的影响越来越大。DALY 和妇科恶性肿瘤的死亡在 40-49 岁的女性中最为显著,PCOS 的发病率主要发生在 15-19 岁,不孕症患病率在 30-39 岁达到峰值。

 

结论:全球CGD 负担在过去 32 年中有所增加,在 SDI 较低的国家更高。应针对不同类型的妇科疾病、年龄组和妇科疾病负担高的国家采取立即有效的干预措施。这些发现将为增强育龄妇女生殖健康的公共卫生政策和干预措施提供有针对性的见解。 

 

大家在科研路上,可以借鉴这种研究方法,为自己的课题添砖加瓦。万层高楼平底起,一起加油呀!

### GBD 数据库介绍 GBD 文件地理数据库是一种用于存储空间数据和属性数据的容器,支持复杂的数据结构以及丰富的地理处理功能。为了访问这种类型的地理数据库中的要素类和其他对象,通常依赖于特定驱动器的支持[^1]。 ### 使用方法 对于想要读取或写入 GDB 文件的操作而言,GDAL 提供了解析该种格式的能力。具体来说: - **安装必要的驱动**:确保已经安装了 FileGDB 或 OpenFileGDB 驱动来实现对 GDB 的读取能力。 - **加载并操作数据集**:通过 GDAL 库可以轻松打开 .gdb 文件夹形式存在的地理数据库,并对其进行查询、遍历等基本操作。 ```python from osgeo import ogr, gdal # 注册所有可用驱动 gdal.AllRegister() driver = ogr.GetDriverByName('OpenFileGDB') # 或者 'FileGDB' dataSource = driver.Open("path_to_your_gdb_file.gdb", 0) if dataSource is None: print("无法打开指定路径下的 GDB 文件") else: layerNames = [layer.GetName() for layer in dataSource] print(f"GDB 中包含图层: {', '.join(layerNames)}") ``` 上述代码展示了如何利用 Python 和 GDAL/ogr 打开一个 GDB 文件,并打印其中所含有的各个图层名称。 ### 应用场景 GBD 数据库广泛应用于 GIS( Geographic Information System 地理信息系统)领域内各种项目当中,比如城市规划、环境保护监测、资源管理等方面。由于其能够高效地管理和分析大规模的空间数据集合,在涉及到多维度时空数据分析的任务里表现尤为出色。 #### 特定案例展示 假设有一个名为 `city_planning` 的 GBD 文件地理数据库包含了多个关于某座城市的基础设施建设情况的相关信息表单(如道路网路分布、公共设施位置)。借助 GDAL 工具包提供的接口函数,开发者们便可以在不改变原有数据格式的前提下完成对该组数据的各种定制化需求处理工作,例如提取某些特定区域内的兴趣点列表或将不同来源的地图资料融合在一起形成新的专题地图产品。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值