【Python入门】相关介绍以及Pycharm的安装

一.初识Python

1.Python的热度

Python是近几年非常火爆的一门编程语言,根据TIOBE编程语言排行榜可以看出,该语言热度一直居高不下

2.Python的优点

  • 易于学习:python有相对较少的关键字,结构简单,和⼀个明确定义的语法,学习起来更加简单
  • 易于阅读:python代码定义的更清晰
  • 易于维护:python的成功在于它的源代码是相当容易维护

  • ⼀个⼴泛的标准库:python的最⼤的优势之⼀是丰富的库,跨平台的,在UNIX,Windows和
    Macintosh兼容很好.python拥有⼀个强⼤的标准库,Python语⾔的核⼼只包含数字、字符串、列表、字典、⽂件等常⻅类型和函数,⽽由Python标准库提供了系统管理、⽹络通信、⽂本处理、数据库接⼝、图形系统、XML处理等额外的功能

  • python社区提供了⼤量的第三⽅模块,使⽤⽅式与标准库类似。它们的功能覆盖科学计算、⼈⼯智能、机器学习、Web开发、数据库接⼝、图形系统多个领域

  • 可移植:基于其开放源代码的特性,Python已经被移植(也就是使其⼯作)到许多平台

  • GUI编程:python⽀持GUI可以创建和移植到许多系统调⽤

  • 可嵌⼊:你可以将python嵌⼊到C/C++程序,让你的程序的用户获得"脚本化"的能⼒

  • 免费、开源,⾯向对象

二.软件安装

1.python解释器

Python的解释器是⼀种可以解释、执⾏Python代码的软件程序。Python官⽅提供了多个解释器,包括CPython、Jython、IronPython、PyPy等。其中,CPython是最常⽤的⼀个,也是官⽅默认的解释器。

2.集成开发环境(IDE)

集成开发环境( IDE ,Integrated Development Environment)⸺集成了开发软件需要的所有⼯具,⼀般包括以下⼯具:
• 图形用户界⾯
• 代码编辑器(⽀持代码补全/⾃动缩进)
• 编译器/解释器
• 调试器(断点/单步执⾏)

Pycharm
推荐初学者使⽤
官⽹:https://www.jetbrains.com/pycharm/
中⽂版:https://www.jetbrains.com.cn/pycharm/

3.Pycharm优点

PyCharm是Python的⼀款⾮常优秀的集成开发环境

  • PyCharm 除了具有⼀般IDE所必备功能外,还可以在Windows 、 Linux 、 macOS 下使⽤
  • PyCharm 适合开发⼤型项⽬
  • ⼀个项⽬通常会包含很多源⽂件
  • 每个源⽂件的代码⾏数是有限的,通常在⼏百⾏之内
  • 每个源⽂件各司其职,共同完成复杂的业务功能

4.安装Python3

官⽅⽹址:https://www.python.org/

点击Downloads

选择windows

选择版本-点击下载

双击安装,进⾏安装

等待安装

安装成功,点击close

打开windwos终端验证(按住win+R键,输入cmd,在命令行中输入python)
出现下图中的三⾏⽂字,则表⽰安装成功。

5.安装Pycharm

去官⽹下载pycharm

https://www.jetbrains.com.cn/pycharm/

点击下载

点击“下⼀步”

启动软件
• 选择->ok
• 勾选->点击继续


• 汉化⽅法
◦ 点击Plugins,搜索chinese
◦ 选择中⽂语⾔包
◦ 点击install
◦ 点击restart IDE,重启ide

6.使用Pycharm

新建项⽬

新建 Python学习 项⽬
• 选择创建⼯程位置
• 选择解释器
• 点击创建

创建成功后再新建python源代码

在 Python学习⽬录下新建 测试 .py ⽂件

在⽂件夹名称上点击⿏标右键,新建→python⽂件

编辑python源代码

print("hello python")
print("hello world")

#print是python中我们学习的第⼀个函数
#print函数的作⽤,可以把 " " 内部的内容,输出到屏幕上

### LlamaIndex 多模态 RAG 实现 LlamaIndex 支持多种数据类型的接入与处理,这使得它成为构建多模态检索增强生成(RAG)系统的理想选择[^1]。为了实现这一目标,LlamaIndex 结合了不同种类的数据连接器、索引机制以及强大的查询引擎。 #### 数据连接器支持多样化输入源 对于多模态数据的支持始于数据收集阶段。LlamaIndex 的数据连接器可以从多个异构资源中提取信息,包括但不限于APIs、PDF文档、SQL数据库等。这意味着无论是文本还是多媒体文件中的内容都可以被纳入到后续的分析流程之中。 #### 统一化的中间表示形式 一旦获取到了原始资料之后,下一步就是创建统一而高效的内部表达方式——即所谓的“中间表示”。这种转换不仅简化了下游任务的操作难度,同时也提高了整个系统的性能表现。尤其当面对复杂场景下的混合型数据集时,良好的设计尤为关键。 #### 查询引擎助力跨媒体理解能力 借助于内置的强大搜索引擎组件,用户可以通过自然语言提问的形式轻松获得所需答案;而对于更复杂的交互需求,则提供了专门定制版聊天机器人服务作为补充选项之一。更重要的是,在这里实现了真正的语义级关联匹配逻辑,从而让计算机具备了一定程度上的‘认知’功能去理解和回应人类意图背后所蕴含的意义所在。 #### 应用实例展示 考虑到实际应用场景的需求多样性,下面给出一段Python代码示例来说明如何利用LlamaIndex搭建一个多模态RAG系统: ```python from llama_index import GPTSimpleVectorIndex, SimpleDirectoryReader, LLMPredictor, PromptHelper, ServiceContext from langchain.llms.base import BaseLLM import os def create_multi_modal_rag_system(): documents = SimpleDirectoryReader(input_dir='./data').load_data() llm_predictor = LLMPredictor(llm=BaseLLM()) # 假设已经定义好了具体的大型预训练模型 service_context = ServiceContext.from_defaults( chunk_size_limit=None, prompt_helper=PromptHelper(max_input_size=-1), llm_predictor=llm_predictor ) index = GPTSimpleVectorIndex(documents, service_context=service_context) query_engine = index.as_query_engine(similarity_top_k=2) response = query_engine.query("请描述一下图片里的人物表情特征") print(response) ``` 此段脚本展示了从加载本地目录下各类格式文件开始直到最终完成一次基于相似度排序后的top-k条目返回全过程。值得注意的是,“query”方法接收字符串参数代表使用者想要询问的内容,而在后台则会自动调用相应的解析模块并结合先前准备好的知识库来进行推理计算得出结论。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值