【机械臂控制】基于RRT算法广义7自由度机器人三次多项式轨迹规划附Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

本研究针对广义 7 自由度机械臂的轨迹规划问题,提出基于快速探索随机树(RRT)算法与三次多项式插值相结合的方法。通过建立机械臂运动学模型,利用 RRT 算法在构型空间中搜索无碰撞路径,采用三次多项式对路径点进行插值,生成平滑连续的轨迹。实验结果表明,该方法能够有效规划出避开障碍物的可行轨迹,且轨迹具有良好的平滑性和可控的加速度特性,为 7 自由度机械臂在复杂环境中的应用提供了理论支持和技术保障。

一、引言

在工业自动化、医疗手术、空间探索等众多领域,广义 7 自由度机械臂凭借其高度的灵活性和冗余度,能够完成复杂的任务。然而,其多自由度、强耦合的特点也使得轨迹规划变得更加困难。轨迹规划作为机械臂控制的关键环节,直接影响到机械臂的工作效率和任务执行质量。传统的轨迹规划方法在处理高维构型空间和复杂障碍物环境时存在计算效率低、容易陷入局部最优等问题。快速探索随机树(RRT)算法作为一种高效的路径规划方法,在高维空间搜索中具有较强的优势,能够快速找到一条从起始点到目标点的无碰撞路径。但 RRT 算法生成的路径通常是由离散点组成的折线,不够平滑,直接应用会导致机械臂运动过程中加速度突变,影响运动稳定性。因此,本文将 RRT 算法与三次多项式插值相结合,提出一种适用于广义 7 自由度机械臂的轨迹规划方法。

二、广义 7 自由度机械臂运动学建模

(一)DH 参数法建模

三、基于 RRT 算法的路径规划

(一)RRT 算法原理

RRT 算法是一种基于采样的路径规划算法,通过在构型空间中随机采样并逐步扩展树结构,快速探索整个空间。算法从起始点开始,每次随机生成一个采样点,然后从当前树中找到距离采样点最近的节点,沿着该方向扩展一定距离生成新节点。如果新节点未与障碍物发生碰撞,则将其加入树中。重复这个过程,直到树扩展到目标点附近或达到最大迭代次数。RRT 算法的优点是能够在高维空间中快速找到一条可行路径,但其生成的路径通常不是最优的,而是一条次优路径。

(二)RRT 算法在 7 自由度机械臂中的应用

在广义 7 自由度机械臂的路径规划中,构型空间为 7 维空间。将 RRT 算法应用于该空间时,需要解决以下关键问题:

  1. 构型空间采样

    :在 7 维构型空间中随机生成采样点,每个采样点代表机械臂的一组关节角度。

  2. 最近邻搜索

    :在已生成的树中找到距离采样点最近的节点。由于 7 维空间的高维度特性,采用 kd - 树等高效数据结构加速最近邻搜索。

  3. 碰撞检测

    :检查机械臂在新生成的构型下是否与障碍物发生碰撞。采用包围盒层次(Bounding Volume Hierarchy,BVH)等方法进行快速碰撞检测。

  4. 路径平滑

    :RRT 算法生成的路径通常是折线,需要进行平滑处理。本文采用三次多项式插值方法对路径进行平滑。

(三)RRT 算法流程

基于 RRT 算法的广义 7 自由度机械臂路径规划流程如下:

  1. 初始化树,将起始构型作为根节点。

  2. 在构型空间中随机生成一个采样点。

  3. 在树中找到距离采样点最近的节点。

  4. 从最近节点向采样点方向扩展一定距离,生成新节点。

  5. 检查新节点是否与障碍物发生碰撞,若未碰撞,则将其加入树中。

  6. 检查新节点是否接近目标构型,若是,则算法终止,否则返回步骤 2 继续迭代。

  7. 从起始节点到目标节点回溯,得到一条无碰撞路径。

⛳️ 运行结果

📣 部分代码

🔗 参考文献

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电、电/冷/热负荷预测、电力设备故障诊断、电池管理系统(BMS)SOC/SOH估算(粒子滤波/卡尔曼滤波)、 多目标优化在电力系统调度中的应用、光伏MPPT控制算法改进(扰动观察法/电导增量法)
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值