自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(34)
  • 收藏
  • 关注

原创 ChatGPT 背后的数学和逻辑。这篇论文就是你所需要的。

和之前一样,我们生成查询 (QUERIES)、键 (KEYS) 和值 (VALUES),但这次,查询 (QUERIES) 仅由解码器的输出生成,而键 (KEYS) 和值 (VALUES) 由编码器的输出生成。例如,如果我们想找到“Thank”与句子中所有其他单词(包括它自己)的相似度分数,我们需要为“Thank”生成QUERY值,为包括“Thank”在内的每个单词生成KEY值,然后将“Thank”的QUERY值乘以其KEY值,并相应地乘以每个其他单词的KEY值,最后将每次的结果相加以获得相似度分数。

2025-06-11 11:54:40 1365

原创 图像和卷积神经网络背后的黑暗真相。

当您看到图像的尺寸为 1920 x 1080 时,这实际上意味着该图像由 1920 列和 1080 行的矩阵组成,并且该矩阵中的每个单元格或像素都包含一个介于 0 到 255 之间的数字。例如,如果我们有一个 3x3 的核,在 6x6 的图像上运行,那么这个 3x3 的核首先会被放置在 6x6 图像的左上角,并与 6x6 图像的 3x3 部分重叠。该矩阵逐个像素地在图像上滑动,通过将矩阵中的所有数字与被分析图像中对应的像素相乘,然后将结果相加,从图像中提取信息。输入图像中的每个通道都有自己的滤波器或核。

2025-06-10 16:01:34 509

原创 掌握目标检测:迁移学习和增强如何影响 YOLOv8 性能

在本项目中,我们使用了 YOLOv8 的“nano”版本,它是该系列模型中最小、速度最快的版本,非常适合快速实验,同时仍能提供合理的性能。nano 版本减少了参数数量,在模型复杂度和泛化能力之间取得了平衡,使其特别适合在较小的数据集上进行训练,而不会产生过多的计算开销或记忆训练数据的风险。训练损失曲线表明,迁移学习模型的初始损失值明显较低,且收敛速度更快,这凸显了预训练权重的优势。用预训练权重初始化的模型的性能几乎是从零开始训练的模型的两倍,这凸显了迁移学习的巨大价值。

2025-06-10 15:44:48 595

原创 卡尔曼滤波器:从概念到应用

—这是一种强大的算法,能够帮助我们在不确定的环境中做出更准确的预测。在这篇博客中,我将向您展示卡尔曼滤波器解决的问题、它们如何直观地工作以及它们的应用场景——所有这些都不会让您陷入繁重的数学知识中。传感器提供的数据并不完美,环境是动态的,物体的运动也并非总是按照预期进行。我们用清晰的图表将每个步骤可视化——从初始状态,到测量更新,再到整个周期——使数学变得易于理解,而无需深入研究方程式。它帮助我预测系统的下一个状态(如位置或速度),测量它,用新数据纠正预测,并重复该过程 - 一步一步变得更加准确。

2025-06-09 11:50:31 938

原创 在边缘部署实时视觉应用程序

克隆代码库后,压缩源文件夹的内容,并将生成的存档文件上传到上一节中创建的 S3 存储桶中。在本教程中,我们将使用 AWS Greengrass,因为它支持大多数 Windows 和 Linux 设备,包括我们的目标 Jetson AGX Xavier。此外,模型还可以量化到更低的精度,从而加快推理速度,但对于较大的模型,此过程通常较长(约 45 分钟)。本例中的脚本只是启动一个 Bash 环境,切换到解压后的构件目录,最后使用所需的命令行参数运行 Deepstream 应用。每个模型类型都有其独有的格式。

2025-06-06 16:47:07 1050

原创 添加训练噪声以改进检测——去噪机制

近期基于 DETR 的架构使用了可变形聚合,使查询能够仅关注图像中的某些区域(Zhu 等人,《可变形 DETR:用于端到端对象检测的可变形 Transformers》,2020 年),而其他一些架构(Liu 等人,《DAB-DETR:动态锚框是 DETR 的更佳查询》,2022 年)则使用了空间锚点(使用 K 均值生成,方式类似于基于锚点的 CNN),这些锚点被编码到初始查询中。加速训练,从而跳过匹配过程。在追踪中,模型会被输入视频流,不仅需要检测连续帧中的多个物体,还需要保留每个检测到的物体的唯一标识。

2025-06-06 16:37:28 540

原创 使用 Python 和 HuggingFace Transformers 进行对象检测

在他们的论文《使用 Transformer 的端到端对象检测》中,他们描述了检测 Transformer (DeTr),我们今天将利用它来构建我们的对象检测流程。如果您熟悉神经网络,就会知道卷积神经网络 (ConvNet) 非常擅长学习图像中的重要特征,而且它们具有空间不变性,这意味着学习到的对象在图像中的位置或大小都无关紧要。类是蓝图,而对象是实物,它具有许多独特的特性,但由于具有共同的特性,因此仍然是类的成员。通常,它们的架构是专门为物体检测而设计的,因为它们以图像作为输入,并输出图像的边界框。

2025-06-06 16:27:02 661

原创 深度强化学习用于自动股票交易

本项目旨在利用深度强化学习(DRL)技术开发一个自动化股票交易系统。通过下载历史股票数据、添加技术指标、创建模拟交易环境,并训练多个DRL代理(如PPO、A2C、DDPG、SAC、TD3和集成代理),系统能够在股票市场中做出有利可图的交易决策。项目首先介绍了强化学习的基本概念,如环境、状态、动作、策略和奖励,随后详细描述了数据准备、技术指标计算、交易环境设计以及代理训练和测试的流程。通过财务指标评估代理性能,最终生成了次日的交易建议。项目展示了DRL在金融领域的应用潜力,强调了模型评估和可视化的重要性,为开

2025-05-09 11:40:27 1099

原创 什么是 DeepSORT 以及如何使用 DeepSORT 实现 YOLOv7 对象跟踪

在多目标跟踪器中,我们可以同时跟踪同一帧中存在的多个目标,即使它们属于不同的类别,也能保持较高的速度。在单目标跟踪器中,无论帧中有多少个目标,我们只跟踪一个目标。我们在跟踪中所做的是,我们得到初始的检测集,在下一步中,我们为它们分配唯一的 ID,然后在视频源的整个帧中跟踪它们,同时保持分配的 ID。DeepSORT 可以定义为一种跟踪算法,它不仅基于物体的速度和运动来跟踪物体,还基于物体的外观来跟踪物体。在对象跟踪中,我们为每个想要跟踪的对象分配一个唯一的 ID,并维护该 ID 直到对象进入框架。

2025-05-06 11:49:44 807

原创 如何使用 YOLOv11 分割对象

如今,随着 YOLOv11 的推出,我们看到了性能和功能的显著提升,尤其是在物体分割方面——这项关键技术不仅使我们能够检测物体,还能在图像中区分物体的精确边界。与单纯的检测不同,物体分割旨在理解物体的精确空间属性,从而将图像划分成有意义的区域。YOLOv11 采用先进的卷积层和创新的主干网络,即使在复杂或杂乱的场景中也能提供更清晰、更准确的物体边界。在本篇博文中,我将向您展示 YOLOv11 如何改进分割任务,并概述如何在您自己的项目中实现它的步骤。上,你可以比较不同的模型,并权衡它们各自的优缺点。

2025-05-06 11:00:55 804

原创 训练神经网络的批量标准化(使用 PyTorch)

即每个隐藏层输入数据分布的变化,意味着每一层都需要一些额外的时间来学习权重,从而使整个系统能够最小化整个神经网络的损失值。批量归一化通过将输入数据的分布缩减至 (0, 1),并逐层执行,理论上有望减少所谓的“内部协方差偏移”,从而加快学习速度。这就是为什么作者引入了一个具有一些参数 γ 和 β 的缩放和平移操作,利用这些参数可以在训练期间调整标准化,在极端情况下甚至可以“表示身份变换”(即输入的内容会再次出现 - 完全消除批量标准化步骤)。错误,因为它们期望输入是某种类型的,但输入却略有不同。

2025-04-29 11:44:30 1661

原创 长短期记忆(LSTM)简介

正如文章中提到的,LSTM 可以通过遗忘和记忆信息来延长信息的保存时间。当新的信息出现时,网络会决定哪些信息应该被忽略,哪些信息应该被记住。它基于输入的上下文。这意味着一些先前的信息应该被记住,而一些则应该被遗忘,一些新的信息应该被添加到记忆中。在 LSTM 中,我们拥有多个组件,而不仅仅是具有单一激活功能的简单网络,从而使网络能够忘记和记住信息。当添加更多具有某些激活函数的层时,神经网络中损失函数的梯度趋近于零,这使得网络难以训练。现在我们已经了解了 LSTM 的架构和组件,让我们看看它的实际作用。

2025-04-28 11:51:41 509

原创 如何从头构建多源知识图谱提取器

此外,能够处理百万个词长的上下文的模型通常支持更小的输出长度,这可能不足以容纳从非常长的上下文中提取的所有关系(除非这些关系在原始源中非常稀疏)。此外,仅仅依靠长上下文并不能解决扩展现有知识图谱的问题,因为提取这些实体的原始源可能并不总是可用,即使可用,仍然需要从头开始提取整个知识图谱,这可能会带来额外的成本。最后,对于下游应用,值得强调的是,所讨论的工作流程将知识图谱中的关系与提取这些关系的原始文档/段落关联起来。在这篇博文中,我演示了如何创建一个知识图谱提取器,以维护从多个来源提取的实体之间的一致性。

2025-04-28 11:33:50 1037

原创 让我们用 PyTorch 从头开始​​构建我们自己的 GPT 模型

我们希望从语料库中获取块大小(8)的随机句子,因此我们生成批量大小(32)的索引(ix),并且对于每个索引,我们取接下来的 8 个标记 id 并为批量(ix)中的每个索引堆叠,但是我们的目标(y)生成的索引比 x(i+1, i + block_size + 1)多一个,因为我们需要预测序列中的下一个标记。设置optimizer.zero_grad(),执行loss.backward(),并执行optimizer.step(),我们使用了 AdamW 优化器,它足以满足我们的需求。

2025-04-27 11:45:47 938

原创 【Pytorch 中的扩散模型】去噪扩散概率模型(DDPM)的实现

在中间时间步长 t,我们有一个带噪声的 X 版本,在最后的时间步长 T,我们得到纯噪声,它大致受标准正态分布的支配。从数学上讲,如果没有看到完整的推导,算法中的确切公式一开始可能看起来有点奇怪,但直观地说,它是基于我们的噪声计划的 alpha 值的扩散核的重新参数化,它只是预测噪声和我们添加到图像的实际噪声的平方差。如果我们的模型能够根据前向过程的特定时间步长成功预测噪声量,我们可以从时间步长 T 的噪声开始迭代,并根据每个时间步长逐渐消除噪声,直到我们恢复类似于原始数据分布中生成的样本的数据。

2025-04-22 11:03:56 1249

原创 KAN 与 MLP 的深入比较

在前面的图像中,我们可以看到,对于 S 型函数,神经元执行的总变换(同时考虑线性和非线性变换)与 S 型函数的原始形状非常相似,只是略微升高(由于线性变换的偏差)并且斜率更陡(由于线性变换的原始斜率)。内部函数学习与每个变量相关的模式,因为正如我们在下面的等式中看到的,每个内部函数都与一个变量相关。然而,我们必须谨慎对待 KAN 的说法,因为在许多情况下,这些所谓的优势是由 KAN 的实施方式决定的,而不是由 Kolmogorov-Arnold 定理本身决定的,我们将在以后的文章中讨论。

2025-04-22 10:50:45 942

原创 YOLO-E:详细信息

YOLO-E 的出现,是一项突破性的进步,有望彻底改变机器观察和理解周围世界的方式。通过处理较低维度(A=16 vs. D=通常为 256 或 512)的视觉提示,SAVPE 在保持模型轻量级的同时实现了强大的性能。虽然其他模型也尝试过类似的功能,但 YOLO-E 却以卓越的效率实现了这一目标——与 YOLO-World 等同类模型相比,训练速度提高了 3 倍,运行速度提高了 1.4 倍。实时检测和分割任意物体的能力为需要快速适应不断变化的环境或用户需求的应用程序开辟了新的可能性。

2025-04-22 10:40:12 1111

原创 用于分析和可视化网格运动模拟的 Python 工具

然而,这些模拟的真正潜力只有通过有效的后处理才能实现,在后处理过程中,网格行为会被分析和可视化。本文将基于我之前博文中关于设置网格运动模拟的基础教程,指导您完成后处理工作流程,帮助您将原始数据转化为切实可行的见解。结合 Matplotlib、NumPy 和 PyVista 等强大的库,我们将掌握创建有意义的可视化技术,并从模拟结果中获得有价值的见解。例如,通过使用 Python 将网格运动的运动学可视化,您可以估算一个俯仰或起伏周期的周期,并确定合适的数据写入间隔。) 的形式提供这些信息,以便进一步处理。

2025-04-21 11:06:26 749

原创 使用 U-Net 架构进行图像分割

第 2 步:定义 UNet 模型图像分割是计算机视觉中的一项关键任务,其目标是将图像中的每个像素归类到特定的类别中。UNet 是一种流行的深度学习架构,广泛应用于生物医学和一般分割任务。UNet 是什么?UNet 是一个专为图像分割而设计的全卷积神经网络 (CNN)。在 PyTorch 中实现 UNet 进行图像分割步骤1:安装依赖项pip 安装 torch torchvision matplotlib第 2 步:定义 UNet 模型。

2025-04-21 10:46:10 382

原创 YOLOv12:以注意力为中心的实时物体检测器

5个变体:YOLOv12-N、YOLOv12-S、YOLOv12-M、YOLOv12-L、YOLOv12-X。-N [53] 和 YOLOv11 [28] 分别高出 3.6%、3.3%、2.1% 和 1.2%,该特征图随后经过后续块的处理,然后进行连接,形成瓶颈结构。,将感受野减少到原来的 1/4,但仍然保持较大的感受野。提出了一种新的聚合方法。YOLOv12模型代码+资料包↓(或看我个人简介处)提出了简单而高效的区域注意模块。YOLOv12-N 的 mAP 表现比。,凸显了其在不同硬件平台上的效率。

2025-04-21 10:23:02 921

原创 从头开始掌握扩散概率模型

第一项类似于 KL 散度先验项,但在这里,因为我们使用了扩散,所以 q 是固定的,并且根据理论,最终的 q(xₜ ∣ x₀) 实际上将非常接近正态分布,所以这是无参数的,我们不会费心去优化它。然后,将其传入我们训练好的模型来预测噪声。似然函数,所有项都是 q 的期望,使其成为 KL 散度,当我们使用高斯的 KL 散度公式时,因为这里两个分布具有完全相同的方差,它最终将是均值之间的差的平方除以方差的两倍,即这个量,因此,由于我们的目标是最大化可能性,我们现在需要减少差异,因为我们的基本事实去噪步骤具有均值。

2025-04-19 11:59:31 856

原创 从图像中提取结构化车辆数据

我们的流水线链由四个组件组成:图像加载组件、提示生成组件、MLLM 调用组件以及用于将 LLM 的输出解析为结构化格式的解析器组件。想象一下,在一个检查点,有一个摄像头监控车辆,你的任务是记录复杂的车辆细节——类型、车牌号、品牌、型号和颜色。这项任务极具挑战性——传统的计算机视觉方法难以处理各种模式,而监督式深度学习则需要集成多个专门的模型、大量的标记数据和繁琐的训练。在本教程中,我们将构建一个车辆文档系统,从车辆图像中提取关键细节。最终,您将拥有一个实用的流程,用于将原始图像转换为结构化、可操作的数据。

2025-04-19 11:32:02 1120

原创 使用 TensorFlow 和 Keras 构建 U-Net

假设起始数量为 64,那么对于你今天构建的 3 块 U-Net(根据你的模型配置),滤波器的数量将是 64、128 和 256。我更喜欢将它们定义在一个定义中,以便在整个模型中重复使用它们(如果我需要将模型部署到生产环境中,例如,我可以通过 JSON 环境变量提供我的配置,该变量可以轻松地以 的形式读入 Python。扩展路径中的每一步都包括对特征图进行上采样,然后进行 2x2 卷积(“上卷积”),将特征通道数量减半,与收缩路径中相应裁剪的特征图连接,以及两个 3x3 卷积,每个卷积后跟一个 ReLU。

2025-04-19 11:08:52 1178

原创 使用 Yolov8 和 DeepSORT 进行对象检测和跟踪

YOLOv8 的速度和 Deep SORT 的强大跟踪能力相结合,打造出一个精简的系统,能够适应各种用例,从颜色编码样本检测(比如我的)到人员跟踪或库存管理解决方案,应有尽有。现在我们已经了解了 YOLO 在实时检测中的用途以及 Deep SORT 在跟踪中的实用性,让我们看看我是如何创建和注释数据集的,如何将这些注释转换为 YOLO 格式,以及我最终如何训练自定义 YOLOv8 模型,然后在视频上检测和跟踪样本🤯👩‍💻🥁。不用担心,标签不会在您创建时显示,而是在您创建任务时显示,稍后我们会进行创建

2025-04-18 10:45:48 1048

原创 理解 Transformer 正弦位置嵌入

例如,如果一个模型以时间步长 50 进行训练,那么在推理时如果时间步长为 10000,则很难保持模型的准确率。但是,如果时间步长的总数不同,这将无法在每个时间步长上保持一致的含义。在扩散模型中,噪声会随着时间的推移在正向过程中被添加,并在反向过程中被消除。理想情况下,不同时间步之间的关系应该被保留,并且每个时间步也应该保持一致的含义。此外,由于即使时间步长发生变化也能保持一致的信息,因此即使在推理时出现训练时没有的时间步长信息,模型也能很好地应对。,可以在连续的时间步之间保持连续性信息。

2025-04-18 10:17:19 416

原创 欺诈检测的随机建模:预测不可预测的事件

而是结构化的概率推理——一种在欺诈检测中至关重要的思维模式,在这种情况下,数据是不平衡的,标签是嘈杂的或延迟的,不良行为者的行为演变速度比模型重新训练的速度要快。泊松分布可以让我们估算在给定的时间窗口内可能发生的此类事件的次数。它们拥抱随机性,并说:“这是可能发生的事情,这是发生的频率。每个状态(例如,正常、可疑、受损)都会以特定的概率触发特定的行为,并且会随着时间的推移在各个状态之间进行转换。在欺诈等高风险领域,错误的代价很高,不良行为者的策略每天都在变化,概率预见不仅仅是一种奢侈,而是必不可少的。

2025-04-18 07:30:00 710

原创 创建您自己的大型语言模型的分步指南

本指南将帮助您构建自己的私人法学硕士 (LLM),无论您是法学硕士 (LLM) 新手还是希望拓展专业知识,都能获得宝贵的见解。大型语言模型 (LLM) 是先进的 AI 系统,它使用复杂的神经网络(例如 Transformer)处理海量数据,从而生成类似人类的文本。大型语言模型 (LLM) 正在变革人工智能,使计算机能够生成和理解类似人类的文本,使其成为各行各业不可或缺的人才。例如,法学硕士可以根据阅读太空冒险故事的知识创作一个关于太空的故事,或者通过回忆生物学文本中的信息来解释光合作用。

2025-04-17 17:00:00 829

原创 2025年高级计算机视觉工程师路线图

以下是一份全面的路线图,概述了您成为全栈计算机视觉工程师的旅程中应涵盖的关键步骤和主题。请记住,这是一个高级路线图,您可以根据自己的兴趣和目标进行自定义。计算机视觉工程师的工作涉及机器学习的交叉领域,模拟人类视觉。深度学习彻底改变了计算机视觉,使其在各种任务中实现了前所未有的性能。由于 Python 拥有丰富的库和框架,掌握 Python 对于实现复杂算法和高效处理大规模图像处理任务至关重要。OpenCV是一个强大的开源库,专为计算机视觉和机器学习任务而设计。e. 计算机视觉的 Web 框架。

2025-04-17 14:45:00 1124

原创 如何使用 Ollama 在本地运行 Llama 3.2-Vision:边缘 AI 的游戏规则改变者

无论您是 AI 研究人员、AI 开发者,还是仅仅喜欢尝试最新技术的人,此版本都将为您带来激动人心的全新可能。中的 Ollama 集成 Llama 3.2-Vision 的图像处理功能,下面提供了一个实际示例,将图像发送到模型进行分析。在这篇文章中,我将指导您将 Ollama 升级到 0.4.1 版本,提供一个实际演示来帮助您在系统上运行。Llama 3.2-Vision 为最令人兴奋的语言模型之一带来了视觉功能,使其能够处理文本和图像。在响应中,模型返回处理的结果,例如识别所提供的任何视觉数据的内容。

2025-04-17 10:29:43 951

原创 U-Net 图像分割简介

例如,假设跳跃连接的特征图尺寸为 136 x 136 像素,而上采样输入尺寸为 104 x 104 像素,则 136 x 136 像素的图像会通过从上、下、左、右四个方向移除 (136-104)/2 个像素,中心裁剪为 104 x 104 像素。现在,两者可以连接起来了。例如,如果常规卷积神经网络的输入是 32x32x3 的图像(实际上,可以是 CIFAR-10 样本),那么一个简单的 2x2 卷积层(采用常规步长和 12 个特征图)将产生 30x30x12 的输出。在最初的研究中,U-Net 用于分类。

2025-04-16 16:45:00 1337

原创 卷积神经网络各层的作用以及API的设计

1. 特征不变性,也就是我们在图像处理中经常提到的特征的尺度不变性,池化操作就是图像的resize,平时一张狗的图像被缩小了一倍我们还能认出这是一张狗的照片,这说明这张图像中仍保留着狗最重要的特征,我们一看就能判断图像中画的是一只狗,图像压缩时去掉的信息只是一些无关紧要的信息,而留下的信息则是具有尺度不变性的特征,是最能表达图像的特征。激活层最重要的便是激活函数,它的主要作用是加入非线性因素的,将特征映射到高维的非线性区间进行解释,解决线性模型所不能解决的问题。绿色矩阵就是经过卷积运算后的输出矩阵。

2025-04-16 14:45:00 1022

原创 Tensorflow实现CNN模型垃圾分类算法

结果展示 下面我们随机抽取validation中的16张图片,展示图片以及其标签,并且给予我们的预测。我们发现预测的准确度还是蛮高的,对于大部分图片,都能识别出其类别。在本数据集中,垃圾的种类有六种(和上海的标准不一样),分为玻璃、纸、硬纸板、塑料、金属、一般垃圾。那么我们能不能通过平常学习的机器学习和深度学习的算法来实现一个简单的垃圾分类的模型呢?物品都是放在白板上在日光/室内光源下拍摄的,压缩后的尺寸为512 * 384。塑料(plastic)共482个图片。一般垃圾(trash)共137个图片。

2025-04-16 10:03:27 540

原创 深度学习-python猫狗识别tensorflow2.0

文件夹test1不变,新建一个文件夹validation,在文件夹train中分别拿出猫和狗的图像各2500张,存到文件夹validation中。文件夹train里面放着25000张图像,猫和狗的图像分别都是12500张,图像名称上都有标明类别。先读取文件夹test1中的图像,使用 model.predict() 进行预测,再根据预测结果把图像进行分类,分别存储到 猫 和 狗 的文件夹中。预测的图像一共12500张,分类之后两个文件夹内分别都是6000多张,几乎持平,分类效果还是不错的。

2025-04-15 17:55:07 1131 1

原创 如何5分钟快速搭建智能问答系统

典型的QA 系统包括在线客户服务系统、QA 聊天机器人等。大多数问答系统可以分为:生成式或检索式、单轮或多轮、开放域或特定问答系统。传统的问答机器人大都是方式实现,这种方式需要对大量的语料进行分类整理。而的实现方式可以彻底摆脱对语料的预处理,只需提供问题和答案的对应关系,通过自然语言处理的语义分析模型对问题库提取语义特征向量存入Milvus中,然后对提问的问题也进行语义特征向量提取,通过对向量特征的匹配就可以实现自动回复,轻松实现智能客服等应用。

2025-04-15 14:40:03 1024 1

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除