普通程序员转行AI算法方向的挑战

本人有幸参与了自己部门的AI预研小组,从最开始半投入(一边兼顾项目,一边预研学习),到后面的全力投入(只负责预研学习),差不多快半年了,下面总结下一个普通的程序员转行AI方向会面临的哪些挑战。

首先介绍下本人背景,非985,211渣本,这学历可以说低得不行了,2017届专业软件工程,非学霸,专业知识一般,主要做JAVA开发,然后转行做的是计算机视觉方向。

然后开始说说我转行AI方向所遇到的挑战。

  • 英语能力
    由于boss要求比较高,要求我们只能看英文论文,对于我一个只过了英语四级,在大学几乎没看过英文文献,在刚开始的时候真的是很煎熬的。但是这真的就是入门级的门槛,因为AI行业最近几年的高速发展,一年的水平差距在普通IT行业至少能算三四年,所以必须得追新,英文阅读能力就必须具备,而且不仅仅追最新的,之前的老论文依然得看,因为新论文里引用老知识都是直接引用老论文,所以你会阅读大量的英文论文。

  • 算法基础
    机器学习,深度学习算法的基础真的非常重要,我只是简单看过一些在线的教学视频,吴恩达的机器学习,CS231n的计算机视觉等等,在后面实现模型,调整参数的时候就会发现自己的基本功太差,几乎只能跟着论文调参,自己除了瞎蒙,不能做出任何决策性的调整。所以如果要转行,算法基础真的非常非常重要,切勿心急。。

  • 数学基础
    这也是非常让我头疼的一块,如果只是做一些机器学习和深度学习相关的工作,我感觉数学的需求并不是特别多,但是如果想继续深入,学习强化学习或者迁移学习,教程里面就会有大把大把的数学推导,真是让人头疼。在一个团队里,大家还可以督促学习,如果一个人自学,面对几页的数学公式,数学基础又不是很好的话。。

  • 编程能力
    编程能力对于一个算法工程师来说依然很重要,因为你除了写模型和调参,往往还需要你工程化,除非你是非常优秀的算法工程师,不需要你实现工程。对于转行算法方向的程序员,千万不能丢掉你的编程能力,有空还是可以多写写代码,然后在网上经常看到很多非IT专业的转行算法,例如数学专业,强烈建议多扎实下编程能力,因为所有的大厂几乎都会有算法笔试题。

  • 实战经验
    其实算法这个行业对实战经验的要求也是非常大的,举个例子,最近我想要实现一篇论文的模型,论文的理论知识看上去是非常简单的,所以就自信满满的去撸模型,然后发现怎么撸都不不太对。最后对比别人的源码,其实我漏掉了很多小细节,比如一些数据的预处理啥的,这些在论文里都不会告诉你,你需要的是经验,业内人士共有的经验,但是我没有,所以作为算法工程师,理论固然重要,但是不能脱离实战。

  • 学历要求
    这是我最近了解到的问题,这个行业真的是很吃学历的,我尝试性地给很多计算机视觉公司投递过简历,都没有收到过任何响应,因为别人的要求几乎都是3年以上硕士以上,我有个硕士同事也去尝试过,虽然会有面试机会,但是面试官还会询问你的本科学历,总体来说对学历要求是比较严格的。然后经过我个人的分析,我觉得这一项要求并不算过分,因为在我看来算法方向和其他IT方向不太一样,三个臭皮匠顶个诸葛亮在这个行业是没有用的,一个优秀的算法工程师强过一百个中庸的算法工程师,所以如果我是企业老板,我也会在学历上进行筛选。

  • 荣誉获奖
    这也是这个行业比较看重的东西,就是各种大赛获得的名次,为开源社区做过哪些贡献,然后发表了多少论文,但是现在论文满天飞,优质的论文却越来越少。如果你想在这个行业有所成就,你就必须得关注各种大赛,争取取得一些名次,国内的大厂都这么干。然后要是能够发一些优质的论文,那你在这个行业就可以混得如鱼得水。

最后说两句

当前AI行业确实是泡沫现象严重,很多人都想进入这个赛道跑跑,泡沫是会破的,特别是最近正好遇上经济寒冬,转行需谨慎!!

从面向工资编程的角度,算法工程师的待遇的确非常好,但是在我看来那只针对于优秀的算法工程师,一般的算法工程师可能会沦落到做算法开发(也就是将别人写好的算法工程化),对于这种工作,待遇也就没那么好了,而且往往还面临模型优化不好,绩效比较差。

以上仅个人观点,虽然比较露骨,可能会打击自信心,但是正因为如此,看清事实,然后依然向前奔跑,不后悔,越努力越幸运。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值