📘题目描述
给定一个二叉树, 找到该树中两个指定节点的最近公共祖先。
百度百科中最近公共祖先的定义为:“对于有根树 T 的两个节点 p、q,最近公共祖先表示为一个节点 x,满足 x 是 p、q 的祖先且 x 的深度尽可能大(一个节点也可以是它自己的祖先)。”
示例 1:
输入:root = [3,5,1,6,2,0,8,null,null,7,4], p = 5, q = 1 输出:3 解释:节点5和节点1的最近公共祖先是节点3。
示例 2:
输入:root = [3,5,1,6,2,0,8,null,null,7,4], p = 5, q = 4 输出:5 解释:节点5和节点4的最近公共祖先是节点5。因为根据定义最近公共祖先节点可以为节点本身。
示例 3:
输入:root = [1,2], p = 1, q = 2 输出:1
💡解题思路:后序递归遍历
✅核心思想(自底向上)
-
如果在当前子树中找到了
p
和q
,则当前节点就是它们的最近公共祖先。 -
我们对每个节点递归查询其左右子树,看是否包含
p
或q
。 -
递归返回:
-
若当前节点是
None
或p
或q
,直接返回当前节点。 -
若左右递归都有结果,说明当前节点是最近公共祖先。
-
若只有一边返回非空,说明另一边是空,那就继续向上传递非空的一边。
-
✅Python 实现
class Solution:
def lowestCommonAncestor(self, root: 'TreeNode', p: 'TreeNode', q: 'TreeNode') -> 'TreeNode':
# base case:空节点,或找到 p/q 中任意一个,返回当前节点
if not root or root == p or root == q:
return root
# 分别递归左右子树
left = self.lowestCommonAncestor(root.left, p, q)
right = self.lowestCommonAncestor(root.right, p, q)
# 如果左为空,返回右;如果右为空,返回左;都不为空,当前节点是 LCA
if not left:
return right
if not right:
return left
return root
🖼️图示解析(以示例为例)
查找节点 p = 5
, q = 1
,从根节点 3
开始:
-
左子树递归找到
5
-
右子树递归找到
1
-
当前节点
3
左右都找到了,返回3
⏱️复杂度分析
项目 | 复杂度 | 说明 |
---|---|---|
时间复杂度 | O(n) | n 为节点数,遍历整棵树一次 |
空间复杂度 | O(h) | h 为树的高度,递归栈空间最坏 O(n) |
🧱常见易错点总结
易错点 | 正确做法说明 |
---|---|
遇到 p 或 q 时不立即返回 | 找到 p 或 q 就应返回当前节点 |
忽略递归左、右子树结果的判断顺序 | 先判断左右为空,再决定返回谁 |
返回错误节点 | 当前节点必须是两边都非空才是 LCA |
🎯总结
-
本题是二叉树递归的经典题型,后序遍历“自底向上”查找公共祖先。