自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(10)
  • 收藏
  • 关注

原创 head网络构建实操

Mask R-CNN是一种流行的目标检测与实例分割算法,其核心在于head网络,该网络负责分类、回归以及生成分割掩码。在这次实验中,我们构建了包含两个共享全连接层和两个输出层的分支结构。通过这一步骤,我们成功构建了分类与回归分支,为后续的目标检测和实例分割任务奠定了基础。:用于提取目标的深层次特征,这些特征将被用于后续的分类和回归任务。通过这一步骤,我们成功构建了Mask分支,实现了对目标的实例分割。:对提取的特征进行进一步处理,以生成更高层次的特征表示。层的特征图,并生成目标的分割掩码。

2025-06-06 17:38:13 474

原创 HOG算法实验

winSize:滑动窗口的大小,blockSize:一个块的大小,blockStride:块滑动的步长,cellSize:单个单元的大小;灰度图转换减少了处理的数据量,从而提升了特征提取的速度和效率。cv2.COLOR_BGR2GRAY 是将BGR(蓝-绿-红)格式的图像转换为灰度图,而cv2.COLOR_RGB2GRAY 则是将RGB(红-绿-蓝)格式的图像转换为灰度图。会导致提取到的HOG特征数量减少,因为滑动窗口在图像上移动的距离更大,从而导致生成的块数减少,最终特征的维度也随之减少。

2025-04-28 15:05:02 656

原创 机器学习多分类算法项目实践

从sklearn.model_selection模块导入rtain_test_split函数,用于划分数据集,使用df.drop('class', axis=1)将class列从df中删除,剩余的列作为特征变量,赋值给X,使用df['class']选取class列作为目标变量,赋值给y,使用train_test_split函数将特征变量X和目标变量y按照 7:3 的比例划分为训练集和测试集。:使用训练集的特征变量X_train和目标变量y_train对当前模型进行训练,让模型学习数据中的模式和规律。

2025-04-28 14:52:14 947

原创 基于卷积神经网络的花卉识别分类

0.03079483 0.96920514] 预测结果: sunflowers。[0.9230295 0.07697055] 预测结果: roses。标签: {'roses': 0, 'sunflowers': 1}分类名: ['roses', 'sunflowers']文件已解压到: extracted_files。数据量大小: 1340。

2025-04-23 11:28:01 720

原创 Opencv

它的基本原理是通过对图像进行卷积操作,计算每个像素点的梯度,从而突出图像中的边缘信息。平移是将图像沿着x和y轴移动的操作,通过改变图像的位置,我们可以实现图像的平移。在常规的坐标系中,逆时针旋转被认为是正方向。通过对图像进行变换,我们可以实现图像的旋转、缩放、平移等操作,从而达到不同的视觉效果和分析目的。缩放是调整图像大小的基本操作,通过改变图像的宽度和高度,我们可以实现图像的缩小或放大。图像边缘检测是计算机视觉和图像处理中的一项基本任务,它用于识别图像中亮度变化明显的区域,这些区域通常对应于物体的边界。

2025-04-21 17:50:18 1050

原创 tensorflow基础语法

【代码】tensorflow基础语法。

2025-04-21 17:24:08 145

原创 使用SVM进行鸢尾花分类

Model 准确率 精确率 召回率 F1值 \。0 SVM分类模型(核函数为linear,惩罚项系数为10.0) 0.977778 0.977778 0.977778 0.977778。AUC值 5折交叉验证的score。Text(0.5, 0, '假正例率')维吉尼亚鸢尾花的数量: 50。变色鸢尾花的数量: 50。山鸢尾花的数量: 50。

2025-04-18 09:30:39 1171

原创 基于梯度递减的手写数字识别

print('\n测试集评估结果: 损失={:.3f}, 准确率={:.2f}%'.format(test_loss, test_acc*100))print('训练集:X={0},y={1}'.format(X_train.shape, y_train.shape))print('测试集:X={0},y={1}'.format(X_test.shape, y_test.shape))image = tf.expand_dims(image, axis=0) # 添加批次维度 (1, 28, 28)

2025-04-15 11:27:08 691

原创 基于Keras构建的多层感知机实现印第安人糖尿病分类案例

导入必要的包#选择“loss='binary_crossentropy', optimizer='adam', metrics=['accuracy']”

2025-04-15 10:57:25 558

原创 机器人系统建模与仿真课程综合实验

origin xyz="0.0 0.0 0.010" rpy="0 0 0":关节的位置和朝向相对于父链接,表示 base_link 离 base_footprint 10毫米的位置。child link="caster_back_link":关节的子链接是后支撑轮 caster_back_link。child link="wheel_left_link":关节的子链接是左轮 wheel_left_link。child link="base_link":关节的子链接是 base_link,即底盘本体。

2025-04-14 16:41:20 1135 3

【计算机视觉】Mask R-CNN中Head网络构建详解:分类、回归与Mask分支实践

内容概要:本文档详细介绍了head网络在Mask R-CNN中的构建过程。实验分为四个任务:环境搭建、分类与包围框回归分支构建、Mask分支构建以及清理高速缓存占用。在分类与回归分支中,输入数据经过两层全连接层后,再分别通过两个全连接层实现分类和包围框回归参数预测,分类分支使用交叉熵损失函数训练,回归分支使用SmoothL1损失函数训练。Mask分支则通过4层卷积、BatchNorm和ReLU操作后,进行2x2的反卷积操作,得到28x28的图像区域,再通过1x1卷积输出每个分类的28x28 mask信息,最终经过sigmoid激活函数输出二值化的mask。; 适合人群:对深度学习有一定了解,尤其是熟悉Mask R-CNN模型,具备一定编程能力的研究人员和开发者。; 使用场景及目标:①掌握head网络的具体实现细节;②理解分类、回归和Mask分支的构建方法及其训练方式;③能够在实际项目中应用Mask R-CNN模型进行目标检测和实例分割。; 阅读建议:读者应按照实验步骤逐步实践,重点关注各分支的构建逻辑及参数设置,并结合提供的代码片段进行调试,确保理解每个操作的功能和目的。同时,建议读者提前准备好相应的实验环境,以便更好地跟随文档进行实践。

2025-06-06

head网络构建实操源代码

head网络构建实操源代码

2025-06-06

期末复习题库[1].docx

C语言期末复习题库[1].docx

2025-04-17

修改学生成绩-1.cpp

c语言修改学生成绩代码文件

2025-04-17

c语言学生成绩排序代码

c语言学生成绩排序代码文件

2025-04-17

python随机座位代码

python随机座位代码和名单

2025-04-16

机器人系统建模与仿真课程综合实验实现功能的py文件

机器人系统建模与仿真课程综合实验实现功能的py文件

2025-04-15

机器人系统建模与仿真课程综合实验工程文件

机器人系统建模与仿真课程综合实验工程文件

2025-04-15

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除