- 博客(10)
- 收藏
- 关注
原创 head网络构建实操
Mask R-CNN是一种流行的目标检测与实例分割算法,其核心在于head网络,该网络负责分类、回归以及生成分割掩码。在这次实验中,我们构建了包含两个共享全连接层和两个输出层的分支结构。通过这一步骤,我们成功构建了分类与回归分支,为后续的目标检测和实例分割任务奠定了基础。:用于提取目标的深层次特征,这些特征将被用于后续的分类和回归任务。通过这一步骤,我们成功构建了Mask分支,实现了对目标的实例分割。:对提取的特征进行进一步处理,以生成更高层次的特征表示。层的特征图,并生成目标的分割掩码。
2025-06-06 17:38:13
474
原创 HOG算法实验
winSize:滑动窗口的大小,blockSize:一个块的大小,blockStride:块滑动的步长,cellSize:单个单元的大小;灰度图转换减少了处理的数据量,从而提升了特征提取的速度和效率。cv2.COLOR_BGR2GRAY 是将BGR(蓝-绿-红)格式的图像转换为灰度图,而cv2.COLOR_RGB2GRAY 则是将RGB(红-绿-蓝)格式的图像转换为灰度图。会导致提取到的HOG特征数量减少,因为滑动窗口在图像上移动的距离更大,从而导致生成的块数减少,最终特征的维度也随之减少。
2025-04-28 15:05:02
656
原创 机器学习多分类算法项目实践
从sklearn.model_selection模块导入rtain_test_split函数,用于划分数据集,使用df.drop('class', axis=1)将class列从df中删除,剩余的列作为特征变量,赋值给X,使用df['class']选取class列作为目标变量,赋值给y,使用train_test_split函数将特征变量X和目标变量y按照 7:3 的比例划分为训练集和测试集。:使用训练集的特征变量X_train和目标变量y_train对当前模型进行训练,让模型学习数据中的模式和规律。
2025-04-28 14:52:14
947
原创 基于卷积神经网络的花卉识别分类
0.03079483 0.96920514] 预测结果: sunflowers。[0.9230295 0.07697055] 预测结果: roses。标签: {'roses': 0, 'sunflowers': 1}分类名: ['roses', 'sunflowers']文件已解压到: extracted_files。数据量大小: 1340。
2025-04-23 11:28:01
720
原创 Opencv
它的基本原理是通过对图像进行卷积操作,计算每个像素点的梯度,从而突出图像中的边缘信息。平移是将图像沿着x和y轴移动的操作,通过改变图像的位置,我们可以实现图像的平移。在常规的坐标系中,逆时针旋转被认为是正方向。通过对图像进行变换,我们可以实现图像的旋转、缩放、平移等操作,从而达到不同的视觉效果和分析目的。缩放是调整图像大小的基本操作,通过改变图像的宽度和高度,我们可以实现图像的缩小或放大。图像边缘检测是计算机视觉和图像处理中的一项基本任务,它用于识别图像中亮度变化明显的区域,这些区域通常对应于物体的边界。
2025-04-21 17:50:18
1050
原创 使用SVM进行鸢尾花分类
Model 准确率 精确率 召回率 F1值 \。0 SVM分类模型(核函数为linear,惩罚项系数为10.0) 0.977778 0.977778 0.977778 0.977778。AUC值 5折交叉验证的score。Text(0.5, 0, '假正例率')维吉尼亚鸢尾花的数量: 50。变色鸢尾花的数量: 50。山鸢尾花的数量: 50。
2025-04-18 09:30:39
1171
原创 基于梯度递减的手写数字识别
print('\n测试集评估结果: 损失={:.3f}, 准确率={:.2f}%'.format(test_loss, test_acc*100))print('训练集:X={0},y={1}'.format(X_train.shape, y_train.shape))print('测试集:X={0},y={1}'.format(X_test.shape, y_test.shape))image = tf.expand_dims(image, axis=0) # 添加批次维度 (1, 28, 28)
2025-04-15 11:27:08
691
原创 基于Keras构建的多层感知机实现印第安人糖尿病分类案例
导入必要的包#选择“loss='binary_crossentropy', optimizer='adam', metrics=['accuracy']”
2025-04-15 10:57:25
558
原创 机器人系统建模与仿真课程综合实验
origin xyz="0.0 0.0 0.010" rpy="0 0 0":关节的位置和朝向相对于父链接,表示 base_link 离 base_footprint 10毫米的位置。child link="caster_back_link":关节的子链接是后支撑轮 caster_back_link。child link="wheel_left_link":关节的子链接是左轮 wheel_left_link。child link="base_link":关节的子链接是 base_link,即底盘本体。
2025-04-14 16:41:20
1135
3
【计算机视觉】Mask R-CNN中Head网络构建详解:分类、回归与Mask分支实践
2025-06-06
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人