毕业论文答辩问题 看这一篇就够了!

有没有人和小编一样?写毕业论文并不可怕,论文答辩才是最可怕的。

图片

其实大家不要害怕,老师还是很好的,不会为难我们。毕业答辩一般都会基于论文的内容进行提问,因此在答辩之前要增加对论文的熟悉度,准备好可能问到的问题答案。

今天就来和大家分享一下毕业论文答辩常问到的问题以及回答模版,赶紧点赞收藏吧!

1,经典问题提问

为什么会选择这个课题进行研究?有什么意义或者目的吗?

老师角度:论文应该贴合实际应用或者科学前沿,不能只是纸上谈兵,因此研究意义十分重要,可以结合社会热点、痛点等方向回答。同时也可以从兴趣方向回答,更加真诚。

回答:现阶段现实的背景是XX,而研究XX课题对社会有XX积极的影响!除了外部因素,研究这个课题对于XX方面有很深的理论指导意义,可以产出更为精细的成果;从更大的层次来说,我也想要从这个课照研究得到XX样的结果。(可以结合论文中的研究现状和目的)。最后是兴趣所致,本人对此方向产生浓厚兴趣,未来也想在此领域深耕。

2,论文有什么创新点?

老师角度:创新点是区别其它论文的分水岭,可以从研究角度、理论突破、方法融合等角度回答。

回答:本文的创新点有以下几点:

① 研究方法创新:引入了[具体新方法或技术],对[研究对象或问题]进行了更深入的分析,相较于传统方法,能够更准确地揭示[具体现象或规律],为该领域的研究提供了新的技术路径。

② 理论贡献:通过文献查找发现目前这个领域仍然有理论缺陷,本文通过理论推导打破壁垒,克服了[某领域]不足。

③ 应用拓展:将[已有理论或方法]应用于[新的领域或问题],验证了其在[具体应用场景]中的有效性,为解决实际问题提供了新的思路和方法。

3,论文的主要研究方法是什么?

老师角度:通过对论文的自述,老师能够更快了解到核心使用方法,可能会进一步询问某些模型或者算法的前提、使用条件等。

本论文主要采用了以下研究方法:

① 文献研究法:本论文首先广泛查找了相关领域的研究方法和现状,再此基础上进行研究,有较强的科学性。

② 实证分析法:收集了[具体数据来源]的相关数据,运用[具体统计或分析工具,如SPSSPRO、Python等]进行定量分析,验证了[具体假设或理论]在实际中的适用性,确保研究结论的科学性和可靠性[具体可以结合论文构建的模型或者使用算法结合回答]。

③ 问卷分析法:通过问卷调查收集社会数据,通过问卷分析法(如差异性分析、满意度分析)调查社会对[某个领域或者热点]的想法,有比较强的时效性与广泛性。

4,论文存在哪些不完备或未解决的?

老师角度:可以如实回答,指出当前的不足,吸取建议继续改进。

① 目前样本量比较少,存在难以收集的情况,如果时间或者条件允许,应该增加样本量,这样得到的结果会更加精确;

② 现实与理论的差距:尽管论文优化了其中某些流程或者加快了模型的运行速度,但是理论上仍然存在缺陷……

③ 受到收集的样本结构显示,没有办法进一步研究深层的问题,可能还需要进一步优化,更精确地反应研究问题的全貌。

数据分析问题提问

1,论文数据是哪里收集的?

老师角度:学术研究严禁捏造数据,数据必须真实客观,因此在论文中也需要写清楚数据来源与可靠性。

本文的数据主要来自问卷调查以及在中国统计等官方网站,参考的期刊文献中的部分数据,并且根据最新的数据进行更新,确保所引用的数据基本上最新的,且真实客观。

2,进行假设检验之前,是否有考虑到数据分布的特点?

老师角度:坚决反对模型套用的情况,应该充分考虑模型使用前提,否则论文结果不可信!

以正态性为例:

在进行假设检验之前,我首先对数据进行了描述性统计分析(如均值、标准差、偏度、峰度等),以初步了解数据的分布情况。

接着,我使用了正态性检验方法(如Shapiro-Wilk检验、Kolmogorov-Smirnov检验)/可视化的方法(比如直方图,Q-Q图)来验证数据是否符合正态分布。

结果发现数据符合正态分布/不符合正态分布,因此对数据进行了[转换]。

3,为什么选择这个算法或者模型?

老师角度:此时应该突出使用模型的优点,可以从数据结构、模型对比或者算法优势上解释。

我选择这个算法/模型主要基于以下几个原因:

1.通过文献查找发现该算法在此问题上有比较好的拟合效果。

2.我的数据有[……特点],这与[模型或者算法]数据特点十分契合,且该算法目前应用领域比较广,应用效果比较好。

3.在选择该算法之前我进行了很多模型对比,通过调整参数发现该模型/算法的上限高/初步拟合效果比较好,因此选择了该模型。

4,可以简单解释一下这个算法的基本原理吗?你是如何利用这个算法训练你的模型的?

老师角度:考验对算法、模型的熟悉度以及实践中的应用。

首先,[算法名称]的基本原理是……(此处根据具体算法进行详细阐述)。例如,如果使用的是神经网络算法,其核心原理是模拟人脑的神经元结构和信息处理方式。通过大量简单的计算单元(神经元)相互连接,形成复杂的网络结构,能够学习和表示复杂的函数关系……

在拟合过程中,首先对数据进行基本处理[标准化、归一化],根据[评估指标]和[可视化](比如聚类中的肘部法则)调整参数。

如果你对算法原理不是很熟悉,或者想要一套简洁的语言描述,可以上SPSSPRO官网的帮助中心,搜索算法名称,比如“神经网络”,滑到最下方就会有该算法的理论分析和重要的公式,帮助理解。

图片

理论搜索结果如下:

图片

5,答辩流程

基本的答辩流程如下所示:

图片

基于此,给同学们一点答辩准备的建议:

1,PPT制作

简洁明了:每页PPT的文字尽量简洁,某些导师非常反感文字堆砌,文字介绍要有侧重点。

重点突出:多用图表、图片、流程图等方式展示关键内容,如实验结果、数据分析等。

美观大方:选择合适的模板,颜色搭配协调,避免过于花哨。

2,答辩技巧

语言表达:语言清晰、流畅,避免使用过于复杂的句子。可以适当使用一些专业术语,但要注意解释清楚。

时间控制:提前练习汇报时间,确保在规定时间内完成汇报。

互动交流:在回答问题时,与评委老师保持眼神交流,表达自己的观点时要清晰、有条理。

3,心理准备

保持自信:相信自己的研究和准备工作,保持自信。

放松心态:答辩只是对学习成果的展示,不要过于紧张。可以通过深呼吸等方式缓解紧张情绪。

4,最后

手把手教大家如何快速写出一篇小论文或者毕业论文,可以说是非常干货

可提供论文指导❤️【本硕博毕业论文、SCI、CCF-ABC、中文核心、EI会议期刊】评职称、硕博升学、本升海外学府
薇--心--服--务--号【学长论文指导】回复( 000 ) 聆取

最后祝大家答辩成功,顺顺利利

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值