AI智能体 | 扣子Coze实战教程:搭建一个旅行规划助手
案例价值
旅游业面临个性化需求与信息碎片化的矛盾,传统服务难以满足灵活行程规划。AI技术逐渐成熟,为智能解决方案提供基础,对用户:通过动态路线定制、实时优化和一站式服务,提升旅行自由度和容错率。对行业:降低人工成本,利用用户数据优化资源分配,串联小众服务商拓展商业生态,推动从“被动预订”到“主动服务”的模式转型。
效果演示
自然语言输入
快捷指令输入
思路梳理
想清楚要做哪些事情,挑战是什么
信息检索
从哪获取旅行相关的信息?比如天气情况、旅行攻略
信息收集
生成一份旅行规划方案,至少需要包含哪些信息?哪些信息为可选项?如果可选项为空,如何处理?
用户体验
有些用户喜欢一次性提供所有信息,有些用户喜欢填表,如何同时支持两种方式?
内容截断
旅行规划方案包含的文字内容可能会非常多,超出模型最大输出tokens,如何处理?
想都是问题,做才有答案,跟着我的思路走。
工作流设计
开始节点
生成标题(大模型节点)
系统提示词
## 设定
你是一个旅游方案制定专家,可以根据用户需求帮助用户起一个合理且好听旅游方案标题。
模板:<目的地><人数>人<天数>(日/天/晚)<从主题总结>(之旅/游)
### 示例
- 杭州4人3晚悠闲赏景之旅
- 东京5天浪漫情侣双人游
- 西安3人4日亲子游
- 巴黎4人7日艺术人文之旅
## 基本信息
出发地:{{departure}}
目的地:{{destination}}
人数:{{people_num}}人
天数:{{days_num}}天
主题:{{travel_theme}}
关系:<朋友/父母/亲子/情侣/搭子>
## 限制
仅返回标题内容,不要返回任何其他格式信息!
计算出发日期和返程日期(代码节点)
代码内容
import datetime
asyncdefmain(args: Args) -> Output:
params = args.params
# 获取开始日期和间隔天数
start_date = params.get('start_date', "")
days_num = params.get('days_num', 0)
# 如果为空,默认为当天
ifnot start_date:
start_date = datetime.date.today().isoformat()
# 计算结束日期,含出发当天,需减一
end_date = datetime.date.fromisoformat(start_date) + datetime.timedelta(days=days_num-1)
# 返回日期字符串
ret: Output = {
"start_date": start_date,
"end_date": end_date.strftime('%Y-%m-%d'),
}
return ret
查询天气信息(墨迹天气插件)
格式化天气信息(代码节点)
代码内容
async defmain(args: Args) -> Output:
params = args.params
weather_list = params.get("weather_list", [])
weathers = []
for weather in weather_list:
weather_info = {}
weather_info["predict_date"], weather_info["weather_day"], weather_info["temp_low"], weather_info["temp_high"] = weather["predict_date"], weather["weather_day"], weather["temp_low"], weather["temp_high"]
weathers.append(weather_info)
# 构建输出对象
ret: Output = {
"weathers": weathers
}
return ret
生成攻略查询条件(文本处理节点)
联网搜索攻略(必应搜索插件)
读取网页链接内容(链接读取插件)
提取旅游攻略(代码节点)
代码内容
async defmain(args: Args) -> Output:
params = args.params
input_list = params.get("input_list", [])
plans_info = []
for item in input_list:
if item.get("data") and item.get("data").get("content"):
content = item.get("data").get("content")
plans_info.append(content)
# 构建输出对象
ret: Output = {
"plans": plans_info
}
return ret
合并搜索信息(代码节点)
代码内容
import json
async def main(args: Args) -> Output:
params = args.params
query_info = {
"weathers": params.get("weathers"),
"plans": params.get("plans")
}
# 构建输出对象
ret: Output = {
"query_info": json.dumps(query_info, ensure_ascii=False),
}
return ret
生成旅游方案(大模型节点)
模型参数配置
说明:这里如果不修改,模型输出的旅游方案可能不完整。
结束节点
工作流试运行,符合预期,直接发布,如果有问题,根据报错情况,调试工作流。
智能体设计
运行模式
模型配置
人设与回复逻辑
工具配置
快捷指令配置
指令内容
出发地:{{出发地}}
目的地:{{目的地}}
天数:{{天数}}
人数:{{人数}}
出发日期:{{出发日期}}
旅游主题:{{旅游主题}}
配置完成后,在预览与调试页面分别测试自然语言输入和快捷指令输入,验证结果是否符合预期。
发布智能体
根据自己的需求,选择对应的发布渠道,这里不做赘述。
大模型目前在人工智能领域可以说正处于一种“炙手可热”的状态,吸引了很多人的关注和兴趣,也有很多新人小白想要学习入门大模型,那么,如何入门大模型呢?
下面给大家分享一份2025最新版的大模型学习路线,帮助新人小白更系统、更快速的学习大模型!
*有需要完整版学习路线*,可以微信扫描下方二维码
,立即免费领取!
一、2025最新大模型学习路线
一个明确的学习路线可以帮助新人了解从哪里开始,按照什么顺序学习,以及需要掌握哪些知识点。大模型领域涉及的知识点非常广泛,没有明确的学习路线可能会导致新人感到迷茫,不知道应该专注于哪些内容。
我们把学习路线分成L1到L4四个阶段,一步步带你从入门到进阶,从理论到实战。
L1级别:AI大模型时代的华丽登场
L1阶段:我们会去了解大模型的基础知识,以及大模型在各个行业的应用和分析;学习理解大模型的核心原理,关键技术,以及大模型应用场景;通过理论原理结合多个项目实战,从提示工程基础到提示工程进阶,掌握Prompt提示工程。
L2级别:AI大模型RAG应用开发工程
L2阶段是我们的AI大模型RAG应用开发工程,我们会去学习RAG检索增强生成:包括Naive RAG、Advanced-RAG以及RAG性能评估,还有GraphRAG在内的多个RAG热门项目的分析。
L3级别:大模型Agent应用架构进阶实践
L3阶段:大模型Agent应用架构进阶实现,我们会去学习LangChain、 LIamaIndex框架,也会学习到AutoGPT、 MetaGPT等多Agent系统,打造我们自己的Agent智能体;同时还可以学习到包括Coze、Dify在内的可视化工具的使用。
L4级别:大模型微调与私有化部署
L4阶段:大模型的微调和私有化部署,我们会更加深入的探讨Transformer架构,学习大模型的微调技术,利用DeepSpeed、Lamam Factory等工具快速进行模型微调;并通过Ollama、vLLM等推理部署框架,实现模型的快速部署。
整个大模型学习路线L1主要是对大模型的理论基础、生态以及提示词他的一个学习掌握;而L3 L4更多的是通过项目实战来掌握大模型的应用开发,针对以上大模型的学习路线我们也整理了对应的学习视频教程,和配套的学习资料。
二、大模型经典PDF书籍
书籍和学习文档资料是学习大模型过程中必不可少的,我们精选了一系列深入探讨大模型技术的书籍和学习文档,它们由领域内的顶尖专家撰写,内容全面、深入、详尽,为你学习大模型提供坚实的理论基础。(书籍含电子版PDF)
三、大模型视频教程
对于很多自学或者没有基础的同学来说,书籍这些纯文字类的学习教材会觉得比较晦涩难以理解,因此,我们提供了丰富的大模型视频教程,以动态、形象的方式展示技术概念,帮助你更快、更轻松地掌握核心知识。
四、大模型项目实战
学以致用 ,当你的理论知识积累到一定程度,就需要通过项目实战,在实际操作中检验和巩固你所学到的知识,同时为你找工作和职业发展打下坚实的基础。
五、大模型面试题
面试不仅是技术的较量,更需要充分的准备。
在你已经掌握了大模型技术之后,就需要开始准备面试,我们将提供精心整理的大模型面试题库,涵盖当前面试中可能遇到的各种技术问题,让你在面试中游刃有余。
全套的AI大模型学习资源已经整理打包
,有需要的小伙伴可以微信扫描下方二维码
,免费领取
****如果这篇文章对你有所帮助,还请花费2秒的时间**点个赞+在看+分享,**让更多的人看到这篇文章,帮助他们走出误区。