全球气象站点年平均降水数据(1929-2024)

全球气象站点年平均降水数据(1929-2024)

1853

数据简介

全球气象站点年平均降水数据,该数据为整理NCDC(美国国家气候数据中心,National Climatic Data Center)公布的气象站点数据得出,计算为从1929到最新2024年12月31号的站点降水平均值数据,并合并整理成年度表,其中每日的降水量数据单位为英寸,为便于使用,我们将年度表的单位整理为毫米,方便大家研究使用。

该数据是来源于NCDC(美国国家气候数据中心,National Climatic Data Center)提供的自1929-2024年气象数据,其中包含气象站点温度、湿度、光照等等,感兴趣的朋友也可以去官网上自行了解。该数据中无效值用9999.99表示,如果需要中国范围的站点可以在站点名称里进行筛选,中国的缩写为CH。

数据来源

数据来源于NCDC(美国国家气候数据中心,National Climatic Data Center),由数据皮皮侠团队人工整理,全部内容真实有效。

时间跨度

1929-2024

数据范围

全球两万多气象站点

数据形式

数据格式为Excel形式

数据指标

数据展示

声明:本数据由数据皮皮侠团队整理,仅用于学术研究

处理气象站数据中的降水量缺失值(通常标记为NULL或NaN)是数据分析中的常见任务,特别是在时间序列分析中。以下是Python中Pandas库常用的几种处理方法: ```python import pandas as pd # 假设df是含有降水数据的DataFrame,"precipitation"列包含降水数据 # 先检查是否有NULL值 null_counts = df["precipitation"].isnull().sum() print("当前数据集中降水量缺失值的数量:", null_counts) # 1. 删除含有NULL值的行 df_clean = df.dropna(subset=["precipitation"], how='any') # 如果你只关心降水数据,可以用how='all'保留所有非NULL降水日 print("删除含有NULL值后的数据集大小:", df_clean.shape[0]) # 2. 插值填充(Imputation) # a) 使用前向填充 (ffill) 或后向填充 (bfill) df_filled = df["precipitation"].fillna(method="ffill") # 从前面的非NULL值填充 # 或者 df_filled = df["precipitation"].fillna(method="bfill") # 从后面的非NULL值填充 # b) 使用插值方法,如线性插值(interpolate) df_interpolated = df["precipitation"].interpolate() # 这会根据数据的趋势进行更复杂的填充 # 3. 按月或年平均填补(如果站有连续观测记录) monthly_avg = df.groupby(df.index.month)["precipitation"].mean().reindex(df["precipitation"].index) df_filled_monthly = df["precipitation"].fillna(monthly_avg) # 存储处理后的数据 df_processed.to_csv("processed_precipitation_data.csv", index=False) # 结果展示处理后的降水数据 print("处理后的降水数据示例:", df_filled.head()) ``` 请注意,处理方法的选择取决于数据的具体情况,如数据的完整性、趋势以及缺失值的合理性。以上代码仅作参考,实际操作时需根据需求调整。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值