用Dify零代码搭建一个专属大模型知识库

引言

为了让大家把所学变成应用,“他”来了,一个零代码经验也可以搭建一个可用的大模型知识库,他来了,注意了,是零代码+可用,零代码+可用,零代码+可用......(重要的事情说三遍)

通过学习能得到什么?

  • • 可以得到一个简单的应用

  • • 可以更深入了解大模型知识库的工作流

  • • 大家有兴趣,可以跳到文末先看效果

重要的工具

我们先来看下今天这个小项目需要的概念和工具:

  • • Dify:Dify是一个开源的大语言模型(LLM)应用开发平台,它融合了后端即服务(Backend as a Service,BaaS)和LLMOps的理念,旨在帮助开发者快速搭建生产级的生成式AI应用。Dify提供了丰富的功能和友好的界面,即使非技术人员也能通过简单的操作快速构建AI应用。

    • • 问题:使用Dify,需要梯子。

  • • 知识库:准备一个比较垂类的文档,最好是公开信息比较难找到的信息,方便后续观察大模型的效果。

  • • LLM的 API key:简单说,就是某个大模型的钥匙,这个很简单,deepseek,通义千问等等各种平台上注册一个账号,就能获得API key。

核心任务

今天我们核心任务是通过Dify搭建一个大模型知识库,所以,关于如何使用梯子,如何准备API key,这些我们就不多赘述了,如果大家真的有需要,我可以再出其他教程。

任务流程

流程如下:

  • • 用户输入:输入一个问题,随便什么。

  • • 大模型提取关键内容:通过大模型,对用户的提问进行归纳,总结成关键字或者关键句子。

  • • 知识检索:用关键字或关键句子在知识库中检索,获得相关内容。

  • • 大模型输出:将检索到的知识给大模型,并让大模型输出最终问题的答案。

在这个流程中,我们需要这样几个节点,大家理解即可,接下来会详细介绍如何操作。

实操过程

1.登录Dify

首先自然是登录Dify了,地址是:https://dify.ai/zh

 

完成登录注册后,进入到了工作室界面:

 

(整个过程需要使用梯子,请注意)

2.创建应用模板

• 创建空白应用--->选择Chatflow--->起个好听的应用名称--->点击创建:

 

 

3.流程配置

先看配置之后的样子:

 

我们逐个解释。

3.1 节点1:开始

这个环节没什么,大家看下右侧的输入字段就行,每次提问,都会有这些字段信息。

 

3.2 节点2:提取关键内容

这个节点是一个大模型,在这里我用了DeepSeek-R1-Distill——Qwen-14B,你用什么都行,只要注册了api key,自己在平台上配置就行了。

添加了大模型后,主要关注下右侧的内容:

 

 

  • • SYSTEM中,我们写的内容,他约束了这个节点的输出,其实就是之前我们提到,先用大模型提取关键字,为了避免大模型直接给你答案,所以给了一些约束。

  • • 记忆:这个打开就好了,就是会记录之前每次的提问,让回答更连贯。

3.3 节点3:知识检索

这个节点是一个知识检索节点,也没什么特殊的,核心在于知识库本身上,这就是Dify的强大,他在背后完成了其他的工作,你只需要用就行了:

 

这里我们对知识库再展开一下,我们这里在海康的平台上下载了一份他们的操作手册来作为知识库:

• 上传文档:

 

• 知识库分段:

 

 

• 完成处理:

 

 

再回来到工作室,在知识检索节点,选择知识库即可:

 

3.4 节点4:回答问题

这个节点也是一个大模型:

 

我们在SYSTEM内做了这样的限制,这段文本约束了大模型的输出。

3.5 节点5:直接回复

这个节点没什么,可开始节点一样。

效果

 

可以看到,这里输出的结果,基本就是知识库的内容中检索到的内容了,这非常有用,试想一下,如果你在本地电脑部署一个,你的所有工作文档可以直接通过和大模型对话的方式得到汇总和整理,效率很高。如果把它部署在团队的服务器上,那么整个部门的培训成本、学习成本会大幅度降低。这个工具非常有意思的地方在于:他不但给了你结果,还能让你看到过程:

 

每个环节做了什么,输入输出是什么,很清楚,你可以更清楚的了解整个过程的细节,也便于你去查看整个工作流的什么环节出错了。

最后

关于Dify的演示,这只是一个非常简单的小的项目,而且使用到的功能都是特别基础的,Dify支持很多的创意,具备很强大的功能,大家可以慢慢研究。

 

### Dify 外部知识库开发指南 #### 支持的文档格式 在使用Dify进行外部知识库开发前,需先将企业内部资料转换成支持的格式。这些格式包括但不限于PDF、Word文档、Excel表格以及纯文本文件等[^1]。 #### 构建本地知识库系统 为了利用Dify搭建高效的本地知识库,可以采用DeepSeek这一深度学习工具作为核心组件。通过结合两者的优势,不仅能够实现对企业内外海量信息的有效管理和快速检索,还能进一步提升自然语言处理能力,助力更精准的内容理解与分析[^2]。 #### 平台特性概览 Dify作为一个专注于大语言模型应用开发的开源平台,特别适合希望简化AI项目实施流程的技术团队和个人开发者。该平台集成了BaaS架构特点并融入了LLMOps最佳实践,即使是没有深厚编程背景的人士也能够在短时间内掌握其基本操作方法。更重要的是,Dify允许接入多样化的数据源,如上传至服务器上的静态资源或是抓取自互联网公开页面的数据;同时提供了一套直观易用的操作面板让用户便捷地维护自己的专属数据库。另外值得一提的是,针对高级用户群体的需求,官方还开放了一系列RESTful风格的标准API接口供调用,便于与其他第三方应用程序无缝对接[^3]。 #### 功能亮点展示 得益于先进的算法设计思路——检索增强生成(Retrieval-Augmented Generation),当下的许多优秀开源解决方案都能够很好地满足不同场景下对于高质量对话交互体验的要求。具体而言,在面对复杂查询请求时,这类系统会优先尝试从未知领域内寻找最接近的答案片段加以组合拼接形成最终回复内容,而不是单纯依赖预训练阶段积累下来的知识体系独立作答。因此,相较于传统方式而言,这种方法往往能带来更加贴近实际需求的结果呈现效果[^4]。 #### 应用实例说明 借助于上述提到的各项关键技术支撑,现在已经有越来越多的企业开始尝试运用类似的智能化手段辅助日常办公事务处理工作。比如,一些大型跨国公司将这套方案应用于员工培训材料编写过程中,既提高了工作效率又保证了产出物的质量水平;还有部分金融机构将其引入风险评估机制当中,通过对过往案例的习模仿来预测未来可能出现的风险事件发展趋势等等[^5]。 ```python import dify_sdk as sdk # 初始化客户端 client = sdk.Client(api_key='your_api_key') # 创建新的知识条目 entry_id = client.create_entry( title="Example Entry", content="This is an example entry created using the Python SDK." ) print(f"Created new entry with ID {entry_id}") ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值