一、个人简介
💖💖作者:计算机编程果茶熊
💙💙个人简介:曾长期从事计算机专业培训教学,担任过编程老师,同时本人也热爱上课教学,擅长Java、微信小程序、Python、Golang、安卓Android等多个IT方向。会做一些项目定制化开发、代码讲解、答辩教学、文档编写、也懂一些降重方面的技巧。平常喜欢分享一些自己开发中遇到的问题的解决办法,也喜欢交流技术,大家有技术代码这一块的问题可以问我!
💛💛想说的话:感谢大家的关注与支持!
💜💜
网站实战项目
安卓/小程序实战项目
大数据实战项目
计算机毕业设计选题
💕💕文末获取源码联系计算机编程果茶熊
二、系统介绍
大数据框架:Hadoop+Spark(Hive需要定制修改)
开发语言:Java+Python(两个版本都支持)
数据库:MySQL
后端框架:SpringBoot(Spring+SpringMVC+Mybatis)+Django(两个版本都支持)
前端:Vue+Echarts+HTML+CSS+JavaScript+jQuery
基于大数据的大学生毕业就业数据分析与可视化系统是一个集数据采集、处理、分析和可视化于一体的综合性平台。系统采用Hadoop+Spark大数据处理框架作为核心技术架构,通过Python语言开发后端业务逻辑,结合Django框架构建稳定的Web服务,前端采用Vue+ElementUI+Echarts技术栈实现用户交互界面和数据可视化展示。系统具备完整的用户管理体系,支持个人中心、用户权限管理等基础功能,核心业务围绕大学生毕业就业数据管理展开,提供就业概况统计分析、专业前景就业分析、学历水平就业分析以及就业因素关联分析等多维度数据分析功能。通过可视化大屏分析模块,系统能够将复杂的就业数据转化为直观的图表和报告,帮助用户深入理解就业市场趋势和规律。整个系统基于MySQL数据库进行数据存储,利用Spark SQL、Pandas、NumPy等数据处理工具实现高效的数据分析和处理,为大学生就业决策提供科学的数据支撑。
三、基于大数据的大学生毕业就业数据分析与可视化系统-视频解说
Python毕业设计:大学生就业数据分析与可视化系统完整技术栈介绍
四、基于大数据的大学生毕业就业数据分析与可视化系统-功能展示
五、基于大数据的大学生毕业就业数据分析与可视化系统-代码展示
from pyspark.sql import SparkSession
from pyspark.sql.functions import col, count, avg, max, min, sum, when, desc, asc
from pyspark.sql.types import StructType, StructField, StringType, IntegerType, DoubleType
import pandas as pd
import numpy as np
from django.http import JsonResponse
import json
spark = SparkSession.builder.appName("EmploymentDataAnalysis").config("spark.sql.adaptive.enabled", "true").config("spark.sql.adaptive.coalescePartitions.enabled", "true").getOrCreate()
def employment_overview_analysis(request):
employment_df = spark.read.format("jdbc").option("url", "jdbc:mysql://localhost:3306/employment_db").option("dbtable", "employment_data").option("user", "root").option("password", "password").load()
total_graduates = employment_df.count()
employed_count = employment_df.filter(col("employment_status") == "已就业").count()
unemployed_count = employment_df.filter(col("employment_status") == "未就业").count()
further_study_count = employment_df.filter(col("employment_status") == "继续深造").count()
employment_rate = round((employed_count / total_graduates) * 100, 2) if total_graduates > 0 else 0
salary_stats = employment_df.filter(col("salary").isNotNull()).agg(avg("salary").alias("avg_salary"), max("salary").alias("max_salary"), min("salary").alias("min_salary")).collect()[0]
industry_distribution = employment_df.filter(col("industry").isNotNull()).groupBy("industry").agg(count("*").alias("count")).orderBy(desc("count")).collect()
region_distribution = employment_df.filter(col("work_region").isNotNull()).groupBy("work_region").agg(count("*").alias("count")).orderBy(desc("count")).collect()
monthly_trend = employment_df.filter(col("employment_date").isNotNull()).withColumn("employment_month", col("employment_date").substr(1, 7)).groupBy("employment_month").agg(count("*").alias("count")).orderBy("employment_month").collect()
company_scale_stats = employment_df.filter(col("company_scale").isNotNull()).groupBy("company_scale").agg(count("*").alias("count")).orderBy(desc("count")).collect()
employment_overview = {"total_graduates": total_graduates, "employed_count": employed_count, "unemployed_count": unemployed_count, "further_study_count": further_study_count, "employment_rate": employment_rate, "avg_salary": float(salary_stats["avg_salary"]) if salary_stats["avg_salary"] else 0, "max_salary": float(salary_stats["max_salary"]) if salary_stats["max_salary"] else 0, "min_salary": float(salary_stats["min_salary"]) if salary_stats["min_salary"] else 0, "industry_distribution": [{"industry": row["industry"], "count": row["count"]} for row in industry_distribution[:10]], "region_distribution": [{"region": row["work_region"], "count": row["count"]} for row in region_distribution[:10]], "monthly_trend": [{"month": row["employment_month"], "count": row["count"]} for row in monthly_trend], "company_scale_stats": [{"scale": row["company_scale"], "count": row["count"]} for row in company_scale_stats]}
return JsonResponse({"code": 200, "message": "就业概况统计分析成功", "data": employment_overview})
def major_employment_analysis(request):
employment_df = spark.read.format("jdbc").option("url", "jdbc:mysql://localhost:3306/employment_db").option("dbtable", "employment_data").option("user", "root").option("password", "password").load()
major_employment_stats = employment_df.groupBy("major").agg(count("*").alias("total_count"), sum(when(col("employment_status") == "已就业", 1).otherwise(0)).alias("employed_count")).withColumn("employment_rate", (col("employed_count") / col("total_count") * 100).cast("double")).orderBy(desc("employment_rate")).collect()
major_salary_stats = employment_df.filter(col("salary").isNotNull()).groupBy("major").agg(avg("salary").alias("avg_salary"), max("salary").alias("max_salary"), min("salary").alias("min_salary"), count("*").alias("sample_count")).filter(col("sample_count") >= 5).orderBy(desc("avg_salary")).collect()
major_industry_mapping = employment_df.filter(col("industry").isNotNull()).groupBy("major", "industry").agg(count("*").alias("count")).collect()
major_industry_dict = {}
for row in major_industry_mapping:
major = row["major"]
if major not in major_industry_dict:
major_industry_dict[major] = []
major_industry_dict[major].append({"industry": row["industry"], "count": row["count"]})
for major in major_industry_dict:
major_industry_dict[major] = sorted(major_industry_dict[major], key=lambda x: x["count"], reverse=True)[:5]
major_competitiveness = employment_df.filter(col("company_level").isNotNull()).groupBy("major").agg(sum(when(col("company_level").isin(["世界500强", "行业龙头"]), 1).otherwise(0)).alias("top_company_count"), count("*").alias("total_count")).withColumn("competitiveness_score", (col("top_company_count") / col("total_count") * 100).cast("double")).orderBy(desc("competitiveness_score")).collect()
major_employment_data = {"employment_rate_ranking": [{"major": row["major"], "total_count": row["total_count"], "employed_count": row["employed_count"], "employment_rate": round(float(row["employment_rate"]), 2)} for row in major_employment_stats[:20]], "salary_ranking": [{"major": row["major"], "avg_salary": round(float(row["avg_salary"]), 2), "max_salary": float(row["max_salary"]), "min_salary": float(row["min_salary"]), "sample_count": row["sample_count"]} for row in major_salary_stats[:20]], "industry_distribution": major_industry_dict, "competitiveness_ranking": [{"major": row["major"], "top_company_count": row["top_company_count"], "total_count": row["total_count"], "competitiveness_score": round(float(row["competitiveness_score"]), 2)} for row in major_competitiveness[:15]]}
return JsonResponse({"code": 200, "message": "专业前景就业分析成功", "data": major_employment_data})
def education_level_analysis(request):
employment_df = spark.read.format("jdbc").option("url", "jdbc:mysql://localhost:3306/employment_db").option("dbtable", "employment_data").option("user", "root").option("password", "password").load()
education_employment_stats = employment_df.groupBy("education_level").agg(count("*").alias("total_count"), sum(when(col("employment_status") == "已就业", 1).otherwise(0)).alias("employed_count"), sum(when(col("employment_status") == "继续深造", 1).otherwise(0)).alias("further_study_count")).withColumn("employment_rate", (col("employed_count") / col("total_count") * 100).cast("double")).withColumn("further_study_rate", (col("further_study_count") / col("total_count") * 100).cast("double")).orderBy("education_level").collect()
education_salary_comparison = employment_df.filter(col("salary").isNotNull()).groupBy("education_level").agg(avg("salary").alias("avg_salary"), count("*").alias("sample_count")).filter(col("sample_count") >= 10).orderBy("education_level").collect()
education_career_development = employment_df.filter(col("position_level").isNotNull()).groupBy("education_level", "position_level").agg(count("*").alias("count")).collect()
education_career_dict = {}
for row in education_career_development:
edu_level = row["education_level"]
if edu_level not in education_career_dict:
education_career_dict[edu_level] = []
education_career_dict[edu_level].append({"position_level": row["position_level"], "count": row["count"]})
for edu_level in education_career_dict:
total_count = sum([item["count"] for item in education_career_dict[edu_level]])
for item in education_career_dict[edu_level]:
item["percentage"] = round((item["count"] / total_count) * 100, 2)
education_career_dict[edu_level] = sorted(education_career_dict[edu_level], key=lambda x: x["count"], reverse=True)
education_industry_preference = employment_df.filter(col("industry").isNotNull()).groupBy("education_level", "industry").agg(count("*").alias("count")).collect()
education_industry_dict = {}
for row in education_industry_preference:
edu_level = row["education_level"]
if edu_level not in education_industry_dict:
education_industry_dict[edu_level] = []
education_industry_dict[edu_level].append({"industry": row["industry"], "count": row["count"]})
for edu_level in education_industry_dict:
education_industry_dict[edu_level] = sorted(education_industry_dict[edu_level], key=lambda x: x["count"], reverse=True)[:8]
education_analysis_result = {"employment_stats": [{"education_level": row["education_level"], "total_count": row["total_count"], "employed_count": row["employed_count"], "further_study_count": row["further_study_count"], "employment_rate": round(float(row["employment_rate"]), 2), "further_study_rate": round(float(row["further_study_rate"]), 2)} for row in education_employment_stats], "salary_comparison": [{"education_level": row["education_level"], "avg_salary": round(float(row["avg_salary"]), 2), "sample_count": row["sample_count"]} for row in education_salary_comparison], "career_development": education_career_dict, "industry_preference": education_industry_dict}
return JsonResponse({"code": 200, "message": "学历水平就业分析成功", "data": education_analysis_result})
六、基于大数据的大学生毕业就业数据分析与可视化系统-文档展示
七、END
💛💛想说的话:感谢大家的关注与支持!
💜💜
网站实战项目
安卓/小程序实战项目
大数据实战项目
计算机毕业设计选题
💕💕文末获取源码联系计算机编程果茶熊