普通管理系统vs健康系统:基于Django的膳食系统毕设优势在哪里?

💖💖作者:计算机毕业设计小途
💙💙个人简介:曾长期从事计算机专业培训教学,本人也热爱上课教学,语言擅长Java、微信小程序、Python、Golang、安卓Android等,开发项目包括大数据、深度学习、网站、小程序、安卓、算法。平常会做一些项目定制化开发、代码讲解、答辩教学、文档编写、也懂一些降重方面的技巧。平常喜欢分享一些自己开发中遇到的问题的解决办法,也喜欢交流技术,大家有技术代码这一块的问题可以问我!
💛💛想说的话:感谢大家的关注与支持!
💜💜
网站实战项目
安卓/小程序实战项目
大数据实战项目
深度学习实战项目

基于Python的膳食健康系统系统介绍

基于Python的膳食健康系统是一个面向现代健康生活需求的综合性Web应用平台,采用Python作为核心开发语言,后端框架支持Spring Boot和Django两种技术方案,前端采用Vue结合ElementUI构建现代化用户界面,数据存储基于MySQL数据库,整体架构采用B/S模式确保系统的可扩展性和维护性。该系统以膳食健康管理为核心,提供了完整的用户管理体系,支持多角色权限控制;通过食物类别和食物成分管理模块,建立了详细的营养数据库,为用户提供准确的营养信息查询;食谱信息模块允许用户创建、分享和收藏各类健康食谱,膳食记录功能帮助用户记录日常饮食习惯并进行数据统计;健康分析模块基于用户的膳食记录和身体指标,生成个性化的营养分析报告和健康建议;为了增强用户互动体验,系统集成了论坛分类和互动问答功能,用户可以分享经验、交流心得,同时配备举报记录机制维护社区环境;系统管理模块提供后台管理功能,包括数据维护、用户管理等;个人中心则为用户提供个人信息管理、历史记录查看等个性化服务,整个系统从技术实现到功能设计都体现了现代Web开发的最佳实践,为用户提供了一个集营养管理、健康分析、社交互动于一体的综合性膳食健康管理平台。

基于Python的膳食健康系统系统演示视频

普通管理系统vs健康系统:基于Django的膳食系统毕设优势在哪里?

基于Python的膳食健康系统系统演示图片

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

基于Python的膳食健康系统系统代码展示

```python
from pyspark.sql import SparkSession
from pyspark.sql.functions import col, sum, avg, count, when, desc
from pyspark.ml.feature import VectorAssembler
from pyspark.ml.clustering import KMeans
import pandas as pd
from datetime import datetime, timedelta
from django.db import models
from django.http import JsonResponse
import json

spark = SparkSession.builder.appName("DietHealthSystem").config("spark.executor.memory", "2g").getOrCreate()

def analyze_user_diet_health(user_id, days=30):
   end_date = datetime.now()
   start_date = end_date - timedelta(days=days)
   diet_records = DietRecord.objects.filter(user_id=user_id, record_date__range=[start_date, end_date])
   diet_data = []
   for record in diet_records:
       food_info = Food.objects.get(id=record.food_id)
       diet_data.append({
           'date': record.record_date.strftime('%Y-%m-%d'),
           'food_name': food_info.name,
           'calories': record.quantity * food_info.calories / 100,
           'protein': record.quantity * food_info.protein / 100,
           'fat': record.quantity * food_info.fat / 100,
           'carbs': record.quantity * food_info.carbs / 100,
           'fiber': record.quantity * food_info.fiber / 100
       })
   df = spark.createDataFrame(diet_data)
   daily_nutrition = df.groupBy("date").agg(
       sum("calories").alias("total_calories"),
       sum("protein").alias("total_protein"),
       sum("fat").alias("total_fat"),
       sum("carbs").alias("total_carbs"),
       sum("fiber").alias("total_fiber")
   )
   avg_nutrition = daily_nutrition.agg(
       avg("total_calories").alias("avg_calories"),
       avg("total_protein").alias("avg_protein"),
       avg("total_fat").alias("avg_fat"),
       avg("total_carbs").alias("avg_carbs"),
       avg("total_fiber").alias("avg_fiber")
   ).collect()[0]
   user_profile = UserProfile.objects.get(user_id=user_id)
   bmr = calculate_bmr(user_profile.weight, user_profile.height, user_profile.age, user_profile.gender)
   calorie_balance = avg_nutrition['avg_calories'] - bmr
   protein_ratio = (avg_nutrition['avg_protein'] * 4) / avg_nutrition['avg_calories'] * 100
   fat_ratio = (avg_nutrition['avg_fat'] * 9) / avg_nutrition['avg_calories'] * 100
   carb_ratio = (avg_nutrition['avg_carbs'] * 4) / avg_nutrition['avg_calories'] * 100
   health_score = calculate_health_score(protein_ratio, fat_ratio, carb_ratio, avg_nutrition['avg_fiber'])
   recommendations = generate_diet_recommendations(protein_ratio, fat_ratio, carb_ratio, calorie_balance)
   analysis_result = {
       'avg_daily_calories': round(avg_nutrition['avg_calories'], 2),
       'calorie_balance': round(calorie_balance, 2),
       'nutrition_ratios': {
           'protein': round(protein_ratio, 1),
           'fat': round(fat_ratio, 1),
           'carbs': round(carb_ratio, 1)
       },
       'health_score': round(health_score, 1),
       'recommendations': recommendations
   }
   return analysis_result

def intelligent_recipe_recommendation(user_id, meal_type='lunch'):
   user_diet_history = DietRecord.objects.filter(user_id=user_id).order_by('-record_date')[:100]
   user_preferences = {}
   for record in user_diet_history:
       food_category = Food.objects.get(id=record.food_id).category_id
       if food_category in user_preferences:
           user_preferences[food_category] += record.quantity
       else:
           user_preferences[food_category] = record.quantity
   preferred_categories = sorted(user_preferences.items(), key=lambda x: x[1], reverse=True)[:5]
   all_recipes = Recipe.objects.filter(meal_type=meal_type, status='active')
   recipe_data = []
   for recipe in all_recipes:
       recipe_foods = RecipeFood.objects.filter(recipe_id=recipe.id)
       total_calories = sum([rf.quantity * Food.objects.get(id=rf.food_id).calories / 100 for rf in recipe_foods])
       category_match_score = 0
       for rf in recipe_foods:
           food_category = Food.objects.get(id=rf.food_id).category_id
           if food_category in [cat[0] for cat in preferred_categories]:
               category_match_score += 1
       recipe_data.append({
           'recipe_id': recipe.id,
           'recipe_name': recipe.name,
           'calories': total_calories,
           'category_match': category_match_score,
           'difficulty': recipe.difficulty,
           'cook_time': recipe.cook_time,
           'rating': recipe.average_rating or 0
       })
   df = spark.createDataFrame(recipe_data)
   feature_cols = ['calories', 'category_match', 'difficulty', 'cook_time', 'rating']
   assembler = VectorAssembler(inputCols=feature_cols, outputCol='features')
   recipe_features = assembler.transform(df)
   kmeans = KMeans(k=3, featuresCol='features', predictionCol='cluster')
   model = kmeans.fit(recipe_features)
   clustered_recipes = model.transform(recipe_features)
   user_cluster = determine_user_cluster(user_id, clustered_recipes)
   recommended_recipes = clustered_recipes.filter(col('cluster') == user_cluster).orderBy(desc('rating'), desc('category_match')).limit(10)
   recommendations = []
   for row in recommended_recipes.collect():
       recipe = Recipe.objects.get(id=row['recipe_id'])
       recommendations.append({
           'recipe_id': recipe.id,
           'name': recipe.name,
           'description': recipe.description,
           'calories': round(row['calories'], 2),
           'cook_time': recipe.cook_time,
           'difficulty': recipe.difficulty,
           'rating': recipe.average_rating or 0,
           'match_score': row['category_match']
       })
   return recommendations

def process_diet_record_batch(user_id, diet_records_list):
   validated_records = []
   total_calories = 0
   total_nutrients = {'protein': 0, 'fat': 0, 'carbs': 0, 'fiber': 0, 'sodium': 0}
   for record_data in diet_records_list:
       try:
           food = Food.objects.get(id=record_data['food_id'])
           quantity = float(record_data['quantity'])
           if quantity <= 0 or quantity > 5000:
               continue
           calories = quantity * food.calories / 100
           protein = quantity * food.protein / 100
           fat = quantity * food.fat / 100
           carbs = quantity * food.carbs / 100
           fiber = quantity * food.fiber / 100
           sodium = quantity * food.sodium / 100
           total_calories += calories
           total_nutrients['protein'] += protein
           total_nutrients['fat'] += fat
           total_nutrients['carbs'] += carbs
           total_nutrients['fiber'] += fiber
           total_nutrients['sodium'] += sodium
           diet_record = DietRecord(
               user_id=user_id,
               food_id=record_data['food_id'],
               quantity=quantity,
               calories=calories,
               meal_type=record_data.get('meal_type', 'other'),
               record_date=record_data.get('record_date', datetime.now().date())
           )
           validated_records.append(diet_record)
       except (Food.DoesNotExist, ValueError, KeyError):
           continue
   if total_calories > 6000:
       return {'success': False, 'message': '单日总热量超出合理范围'}
   user_profile = UserProfile.objects.get(user_id=user_id)
   daily_calorie_limit = calculate_daily_calorie_need(user_profile.weight, user_profile.height, user_profile.age, user_profile.gender, user_profile.activity_level)
   existing_today_calories = DietRecord.objects.filter(user_id=user_id, record_date=datetime.now().date()).aggregate(total=models.Sum('calories'))['total'] or 0
   if existing_today_calories + total_calories > daily_calorie_limit * 1.5:
       return {'success': False, 'message': '今日热量摄入将超出建议值50%'}
   DietRecord.objects.bulk_create(validated_records)
   nutrition_summary = {
       'total_calories': round(total_calories, 2),
       'total_protein': round(total_nutrients['protein'], 2),
       'total_fat': round(total_nutrients['fat'], 2),
       'total_carbs': round(total_nutrients['carbs'], 2),
       'total_fiber': round(total_nutrients['fiber'], 2),
       'records_added': len(validated_records)
   }
   update_user_daily_summary(user_id, datetime.now().date(), nutrition_summary)
   return {'success': True, 'summary': nutrition_summary, 'recommendations': generate_meal_suggestions(total_nutrients, daily_calorie_limit - existing_today_calories - total_calories)}

# 基于Python的膳食健康系统系统文档展示
![在这里插入图片描述](https://i-blog.csdnimg.cn/direct/9252227da9c54362ae97325d0d9f97c1.png#pic_center)

       




> 💖💖作者:计算机毕业设计小途
💙💙个人简介:曾长期从事计算机专业培训教学,本人也热爱上课教学,语言擅长Java、微信小程序、Python、Golang、安卓Android等,开发项目包括大数据、深度学习、网站、小程序、安卓、算法。平常会做一些项目定制化开发、代码讲解、答辩教学、文档编写、也懂一些降重方面的技巧。平常喜欢分享一些自己开发中遇到的问题的解决办法,也喜欢交流技术,大家有技术代码这一块的问题可以问我!
💛💛想说的话:感谢大家的关注与支持!
💜💜
[网站实战项目](https://blog.csdn.net/2501_92808674/category_13011385.html)
[安卓/小程序实战项目](https://blog.csdn.net/2501_92808674/category_13011386.html)
[大数据实战项目](https://blog.csdn.net/2501_92808674/category_13011387.html)
[深度学习实战项目](https://blog.csdn.net/2501_92808674/category_13011390.html)



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值