OpenAI 最新推出的 Sora-2 视频模型,在生成画质、场景还原度及交互便捷性上实现全面升级,尤其新增Chat 格式直接调用功能 —— 只需在提示词中添加 “横屏 / 竖屏”“时长”“清晰度” 等要求,即可快速生成符合需求的视频内容。本文以 “三部对接” 为核心,结合官方参考文档代码,基于 BASEURL(https://api.jizhiai.top/),为开发者提供从环境准备到实际调用的完整接入方案。
一、第一部:对接前的基础准备(5 分钟完成)
在发起 Sora-2 模型调用前,需完成环境配置与权限获取,确保接口通信顺畅。
1. 开发环境搭建
Sora-2 支持多语言调用,推荐优先选择 Python(3.8+)、Java(JDK 11+)或 Node.js(14+)环境,以下为关键配置步骤:
- Python 环境:安装核心依赖库,执行命令:
pip install requests # 用于接口请求
pip install python-dotenv # 可选,用于安全存储API密钥
- Java 环境:通过 Maven 引入okhttp3依赖(参考文档标准配置):
\<dependency>
  \<groupId>com.squareup.okhttp3\</groupId>
  \<artifactId>okhttp\</artifactId>
  \<version>4.11.0\</version>
\</dependency>
- Node.js 环境:安装axios用于 HTTP 请求:
npm install axios --save
2. 账号与 API 密钥获取
Sora-2 调用需通过官方合作平台获取权限,步骤如下:
- 访问 BASEURL 对应的平台,完成账号注册(支持手机号 / 邮箱);
- 进入 “账号中心 - 实名认证”,个人用户上传身份证、企业用户提交营业执照,审核通常 1 个工作日内完成;
- 认证通过后,在 “API 管理 - 密钥生成” 页面,选择 “生产环境” 或 “测试环境”,生成专属 API 密钥(建议设置 3 个月有效期,定期更换),复制并保存至本地安全文件(如.env文件)。
二、第二部:核心调用 ——Chat 格式参数配置(重点)
Sora-2 的核心升级在于Chat 格式调用,无需复杂参数拼接,只需在提示词中嵌入 “格式 / 时长 / 清晰度” 要求,结合 BASEURL 接口即可发起请求。以下为多语言调用示例(均基于参考文档代码优化)。
1. Python 调用示例(Chat 格式核心实现)
import requests
import json
from dotenv import load\_dotenv # 若使用.env存储密钥
import os
\# 加载API密钥(安全方式)
load\_dotenv()
api\_key = os.getenv("SORA2\_API\_KEY")
\# 对接BASEURL
base\_url = "https://api.jizhiai.top/sora-2/chat/generate" # Chat格式专属接口
\# Chat格式提示词:直接包含视频要求(横屏、15s、高清)
prompt = """
(横屏、15s、高清)生成一段美食制作视频:镜头从食材特写开始,展示厨师切菜、翻炒的过程,背景为温馨厨房,光线明亮,结尾呈现成品摆盘,画面流畅无卡顿。
"""
\# 请求头配置
headers = {
  "Authorization": f"Bearer {api\_key}",
  "Content-Type": "application/json"
}
\# 请求参数(Chat格式无需额外复杂参数,仅需prompt)
payload = {
  "prompt": prompt,
  "response\_format": "video\_url" # 指定返回视频链接
}
\# 发起调用
try:
  response = requests.post(
  url=base\_url,
  data=json.dumps(payload),
  headers=headers,
  timeout=60 # 因视频生成需时间,延长超时时间
  )
  response.raise\_for\_status()
  result = response.json()
  # 成功返回:任务ID与视频生成状态
  print(f"任务ID:{result\['task\_id']}")
  print(f"当前状态:{result\['status']}(生成中/已完成)")
  if result\["status"] == "completed":
  print(f"视频下载链接:{result\['video\_url']}")
except requests.exceptions.RequestException as e:
  print(f"调用失败:{str(e)},错误码:{response.status\_code if 'response' in locals() else '未知'}")
2. Java 调用示例(Chat 格式适配)
import okhttp3.\*;
import org.json.JSONObject;
import java.io.IOException;
public class Sora2ChatCall {
  public static void main(String\[] args) {
  // 配置基础信息
  String baseUrl = "https://api.jizhiai.top/sora-2/chat/generate";
  String apiKey = "你的API密钥"; // 建议从配置文件读取,避免硬编码
  // Chat格式提示词(竖屏、20s、标清)
  String prompt = "(竖屏、20s、标清)生成一段宠物视频:小狗在草坪上追球,偶尔抬头看向镜头,搭配轻快背景音乐,画面比例9:16适配手机端。";
  // 构建请求参数
  JSONObject payload = new JSONObject();
  payload.put("prompt", prompt);
  payload.put("response\_format", "video\_url");
  // 发起POST请求
  OkHttpClient client = new OkHttpClient();
  RequestBody requestBody = RequestBody.create(
  MediaType.parse("application/json; charset=utf-8"),
  payload.toString()
  );
  Request request = new Request.Builder()
  .url(baseUrl)
  .addHeader("Authorization", "Bearer " + apiKey)
  .post(requestBody)
  .build();
  // 异步处理响应
  client.newCall(request).enqueue(new Callback() {
  @Override
  public void onFailure(Call call, IOException e) {
  System.out.println("调用失败:" + e.getMessage());
  }
  @Override
  public void onResponse(Call call, Response response) throws IOException {
  if (response.isSuccessful()) {
  String responseBody = response.body().string();
  JSONObject result = new JSONObject(responseBody);
  System.out.println("任务ID:" + result.getString("task\_id"));
  if (result.getString("status").equals("completed")) {
  System.out.println("视频链接:" + result.getString("video\_url"));
  }
  } else {
  System.out.println("请求异常:状态码" + response.code());
  }
  }
  });
  }
}
三、第三部:结果查询与优化(确保生成效果)
由于视频生成耗时受 “时长 / 清晰度” 影响(如 4K/60s 视频约需 3-5 分钟),需通过任务 ID 查询进度,同时根据生成效果优化提示词。
1. 进度查询(Python 示例)
def query\_video\_progress(task\_id, api\_key):
  query\_url = f"https://api.jizhiai.top/sora-2/chat/task/{task\_id}"
  headers = {"Authorization": f"Bearer {api\_key}"}
  try:
  response = requests.get(query\_url, headers=headers, timeout=30)
  response.raise\_for\_status()
  progress\_data = response.json()
  return {
  "task\_id": task\_id,
  "progress": progress\_data\["progress"] + "%", # 进度百分比
  "status": progress\_data\["status"], # completed/failed/pending
  "error\_msg": progress\_data.get("error\_msg", "无") # 错误信息(若失败)
  }
  except Exception as e:
  return {"error": f"查询失败:{str(e)}"}
\# 调用示例
progress\_result = query\_video\_progress("你的任务ID", api\_key)
print(progress\_result)
2. 提示词优化技巧(提升生成质量)
基于参考文档建议,结合 Chat 格式特点,优化提示词可显著提升效果:
- 明确细节:在括号内补充更具体要求,如 “(横屏 16:9、15s、1080p 高清)生成旅行 vlog 片段,镜头从雪山远景缓慢推进到人物背影,搭配风声音效”;
- 规避歧义:避免模糊表述,如用 “竖屏 9:16 适配抖音” 替代 “手机格式”,用 “30 帧 / 秒流畅度” 替代 “画面不卡顿”;
- 风格限定:可在括号后补充风格,如 “(竖屏、20s、标清)生成动漫风格校园场景:学生在樱花树下看书,色彩明亮,参考宫崎骏动画画风”。
四、关键说明与参考资源
- 接口限制:免费用户 Chat 格式调用限 10 次 / 分钟,付费用户无频率限制,可查看套餐详情;
- 错误排查:若提示 “参数无效”,需检查提示词括号格式是否正确(如 “(横屏、15s、高清)” 不可遗漏括号);若返回 “权限不足”,需确认账号已通过实名认证并开通 Sora-2 调用权限;
- 参考文档:完整 API 文档、更多语言示例(如 Go、PHP)及常见问题,可查询,文档实时同步最新功能更新。
通过以上 “三部对接”,开发者可快速接入 OpenAI Sora-2 模型,借助 Chat 格式的便捷性,高效生成符合业务需求的视频内容,适用于短视频制作、广告创意、教育培训等多场景应用。