无需特殊网络,小视频随便下载,真的强!

   不少小伙伴都希望能将一些短视频平台上精彩的视频下载下来珍藏,但却不知如何操作。

今天给大家带来的这款工具,能够实现批量下载,简直是快乐翻倍。

DYD短视频无水印下载,聚合下载且无水印

   这款软件无需安装,解压后找到主程序图标,点击即可启动。

图片

   若出现更新提示,暂且不要更新。

图片

   软件界面支持众多平台的下载,基本能满足日常需求。

图片

   以抖音为例,进入使用界面后,可选择主页作品合集、单个作品,或喜欢及收藏的作品,一键抓取并批量下载,十分便捷。特别是针对“我的喜欢”进行下载,操作性极强。

图片

   建议大家登录账号,否则无法批量下载作品。

    软件能迅速采集到视频信息,支持批量及单个下载。

图片

   此外,软件还可自行设置,如下载目录、是否保存视频封面等。

图片

   这款软件整体使用方便,功能强大,小红书和快手的视频同样可以下载,这里就不一一演示了,有兴趣的朋友就抓紧试试吧!

这段代码实现了一个基于 PID 控制器和前馈补偿的控制系统。具体来说,它包括以下几个部分: 1. 系统建模:首先定义一个连续系统模型 sys,其中传递函数为 133/(s^2 + 25s),然后使用 c2d 函数将其离散化得到离散系统模型 dsys。 ``` sys=tf(133,[1,25,0]); dsys=c2d(sys,ts,'z'); [num,den]=tfdata(dsys,'v'); ``` 2. 反馈控制器:利用 PID 控制器实现反馈控制。在每个时刻 k,通过测量系统输出 y(k) 与期望输出 yd(k) 之间的误差,计算出控制器输出 u(k)。 ``` error(k)=yd(k)-y(k); ei=ei+error(k)*ts; up(k)=80*error(k)+20*ei+2.0*(error(k)-error_1)/ts; ``` 其中,ei 表示误差的积分项,error_1 表示上一个时刻的误差。这里的 PID 控制器系数是手动调整得到的,可以根据实际应用需要进行调整。 3. 前馈补偿:为了进一步提高系统的跟踪性能,引入了前馈补偿。在每个时刻 k,通过测量期望输出 yd(k) 的变化率 dyd(k) 和加速度 ddyd(k),计算出前馈控制器输出 uf(k)。 ``` uf(k)=25/133*dyd(k)+1/133*ddyd(k); ``` 其中,系数 25/133 和 1/133 是根据系统模型得到的,可以根据实际应用需要进行调整。 4. 控制器输出求和:最终的控制器输出 u(k) 是反馈控制器输出 up(k) 和前馈控制器输出 uf(k) 的加权和,即 ``` u(k)=up(k)+uf(k); ``` 可以通过设置变量 M 来选择是否使用前馈补偿。当 M=1 时,只使用 PID 控制器;当 M=2 时,使用 PID 控制器和前馈补偿。 5. 限幅:为了保证控制信号 u(k) 的安全性,引入了限幅,将 u(k) 限制在 [-10, 10] 的范围内。 ``` if u(k)>=10 u(k)=10; end if u(k)<=-10 u(k)=-10; end ``` 6. 数据保存和显示:最后,将仿真结果保存并绘制图像,包括期望输出 yd(k)、实际输出 y(k)、误差 error(k)、控制器输出 up(k)、前馈控制器输出 uf(k) 和总输出信号 u(k)。 ``` time(k)=k*ts; A=0.5;F=3.0; yd(k)=A*sin(F*2*pi*k*ts); dyd(k)=A*F*2*pi*cos(F*2*pi*k*ts); ddyd(k)=-A*F*2*pi*F*2*pi*sin(F*2*pi*k*ts); y(k)=-den(2)*y_1-den(3)*y_2+num(2)*u_1+num(3)*u_2; figure(1); subplot(211); plot(time,yd,'r',time,y,'k:','linewidth',2); xlabel('time(s)');ylabel('yd,y'); legend('Ideal position signal','Position tracking'); subplot(212); plot(time,error,'r','linewidth',2); xlabel('time(s)');ylabel('error'); figure(2); plot(time,up,'k',time,uf,'b',time,u,'r','linewidth',2); xlabel('time(s)');ylabel('up,uf,u'); ``` 这里使用了 sin 函数生成了一个正弦波作为期望输出信号 yd(k),然后通过离散系统模型计算出实际输出 y(k)。最后,使用 subplot 和 plot 函数绘制了两幅图,分别显示了期望输出 yd(k)、实际输出 y(k)、误差 error(k) 和控制器输出 up(k)、前馈控制器输出 uf(k) 和总输出信号 u(k)。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值