deekseek强大的思考能力

今天见识到了deekseek深度思考的优点和强大。

起因是根据评分标准的表格,写一个判断分数的函数:

让其他ai跑,“初三男生”那一列下方的数据总是错误

我的提示词:根据图片写出如下python函数:输入:年级(三个年级对应为1,2,3)、性别、分数;输出:等级(四个等级对应为1,2,3,4)

ai的回答:

def get_seat_forward_bend_rank(grade, gender, score):
    table = {
        (1, '男'): {
            100: 17.6, 95: 15.9, 90: 14.2,
            85: 12.3, 80: 10.4, 78: 9.1,
            76: 7.8, 74: 6.5, 72: 5.2,
            70: 3.9, 68: 2.6, 66: 1.3,
            64: 0, 62: -1.3, 60: -2.6,
            50: -3.8, 40: -5, 30: -6.2,
            20: -7.4, 10: -8.6
        },
        (1, '女'): {
            100: 21.8, 95: 20.1, 90: 18.4,
            85: 16.7, 80: 15, 78: 13.7,
            76: 12.4, 74: 11.1, 72: 9.8,
            70: 8.5, 68: 7.2, 66: 5.9,
            64: 4.6, 62: 3.3, 60: 2,
            50: 1.2, 40: 0.4, 30: -0.4,
            20: -1.2, 10: -2
        },
        (2, '男'): {
            100: 19.6, 95: 17.7, 90: 15.8,
            85: 13.7, 80: 11.6, 78: 10.3,
            76: 9, 74: 7.7, 72: 6.4,
            70: 5.1, 68: 3.8, 66: 2.5,
            64: 1.2, 62: -0.1, 60: -1.4,
            50: -2.6, 40: -3.8, 30: -5,
            20: -6.2, 10: -7.4
        },
        (2, '女'): {
            100: 22.7, 95: 21, 90: 19.3,
            85: 17.6, 80: 15.9, 78: 14.6,
            76: 13.3, 74: 12, 72: 10.7,
            70: 9.4, 68: 8.1, 66: 6.8,
            64: 5.5, 62: 4.2, 60: 2.9,
            50: 2.1, 40: 1.3, 30: 0.5,
            20: -0.3, 10: -1.1
        },
        (3, '男'): {
            100: 21.6, 95: 19.7, 90: 17.8,
            85: 15.8, 80: 13.8, 78: 12.4,
            76: 11, 74: 9.6, 72: 8.2,
            70: 6.8, 68: 5.4, 66: 4,
            64: 2.6, 62: 1.2, 60: -0.2,
            50: -2.6, 40: -3.8, 30: -5,
            20: -6.2, 10: -7.4
        },
        (3, '女'): {
            100: 23.5, 95: 21.8, 90: 20.1,
            85: 18.4, 80: 16.7, 78: 15.4,
            76: 14.1, 74: 12.8, 72: 11.5,
            70: 10.2, 68: 8.9, 66: 7.6,
            64: 6.3, 62: 5, 60: 3.7,
            50: 2.9, 40: 2.1, 30: 1.3,
            20: 0.5, 10: -0.5
        }
    }
    if (grade, gender) not in table:
        raise ValueError("Invalid grade or gender")
    score_table = table[(grade, gender)]
    for s in score_table:
        if score >= score_table[s]:
            if s >= 90:
                return 1
            elif s >= 80:
                return 2
            elif s >= 60:
                return 3
            else:
                return 4
    return 4
代码大致含义就是根据年级和性别判断在那一列,再根据分数得出成绩。

然而初三男性在10分到50分的评分数据全部错误了,写成了初一男性的,并且偏了一位

ai给的初三男性:50: -2.6, 40: -3.8, 30: -5, 20: -6.2, 10: -7.4

与实际的初三男性全部不同

实际的初一男性:60: -2.6, 50: -3.8, 40: -5, 30: -6.2, 20: -7.4

推测是由于表格有一定倾斜角度,并且右下角水印影响。

我告诉ai初三男性出错了,他就把错误的地方换成了初二男性

这里我后半句话说错了,应该是写成初一男生

我再告诉写错了,就又写回了初一男生,和第一次错误一样

在我告诉它正确数据前三项后,才改正过来,变成了完全正确的数据

我拿第一次的错误代码和表格图片去问deekseek

它进行了长达三分钟的思考

刚开始,它也识别错了,1.4是正确的,2.6错误

他认为初三男的代码段无误

但紧接着,想到了图片中存在排版错误的可能性

开始沿着这个可能分析:

把不及格部分每一行都检查了一遍,语句太长,全部思考我放会放到文章最后

尽管没有识别出正确的表格,但它还是发现了问题,代码中的数据和表格的对应不上

开始从列转别为行的思考:(语句太长)

一行一行检查:

按照行看后,每个数据与年级、性别对应,分析出了第一个错误的数据,并修改正确

接下来的每行也一一检查

由于图片本身的不清晰,将倒数第二行的-5看成了-6,最后一行看不出来。但这些错误与ai的思考无关,在猜测由于排版问题,从列看无法正确得出结果后,转而从行看,并且分析出了数据正确的位置。

修改后的代码:

五个错误改正了三个,并且正确分析出了数据的位置,后两个数据由于ocr技术,没有得出正确结论。

这强大的功能有些震撼到我了

最后是完整的思考+回答:

### 关于 DeepSeek 的 IT 相关特性 DeepSeek 是一种基于大模型技术的人工智能解决方案,其主要功能在于提供高效的语义搜索能力以及灵活的部署选项。对于企业而言,选择合适的部署方式取决于自身的规模和技术需求。 #### 部署模式的选择 针对不同企业的特点,DeepSeek 提供了多种部署方案。例如,本地化部署的知识库适合那些对数据安全性要求较高、具备完善的 IT 基础设施和专业技术团队支持的大中型企业[^1]。而 SaaS 模式的灵活性则使其成为中小型企业更为经济实惠且易于实施的选择。 #### 语义理解和搜索效率提升 DeepSeek 不仅能够识别精确匹配的内容,还能通过深层次的语言理解来捕捉与查询意图相关的隐含信息。这意味着即便用户的输入并非严格对应文档中的确切表述,系统依然可以借助先进的算法挖掘出具有相似意义的结果[^2]。这一特性显著增强了用户获取所需资料的速度与准确性。 #### 技术局限性分析 尽管当前版本的大模型已经展现出相当程度上的智能化水平,在某些场景下仍无法达到自然流畅的人类交流体验标准[^3]。因此,在实际应用过程中需要注意调整预期值,并结合具体情况合理规划如何利用这些新兴科技资源最大化效益。 #### Markdown 学习辅助作用 值得注意的是,除了核心业务价值之外,部分使用者反馈指出接触并熟悉 DeepSeek 过程当中也间接促进了个人关于 markdown 编辑技巧方面的成长经历分享[^4]。这表明该产品不仅限于解决特定工作任务本身,还有助于促进相关人员技能拓展方面发挥积极作用。 ```python # 示例代码展示如何调用 API 获取 DeepSeek 结果 import requests def get_deepseek_results(query, api_key): url = "https://api.deepseek.com/v1/search" headers = {"Authorization": f"Bearer {api_key}"} payload = {"query": query} response = requests.post(url, json=payload, headers=headers) if response.status_code == 200: return response.json() else: raise Exception(f"Error: {response.status_code}, Message: {response.text}") # 使用函数示例 try: results = get_deepseek_results("example search term", "your_api_key_here") print(results) except Exception as e: print(e) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值