
前言
豆瓣电影作为国内知名的影视评论社区,积累了海量用户生成的短评内容,这些短评不仅反映了观众对影片的直观感受,更蕴含着丰富的情感倾向与评价维度。对电影短评进行情感分析,既能为普通观众提供观影参考,也能为影视从业者提供市场反馈依据。本文将通过 Python 爬虫实战,详细讲解如何定向爬取豆瓣电影短评数据,运用自然语言处理技术进行情感倾向分析,并通过可视化手段呈现分析结果,构建一套完整的 “数据爬取 - 情感分析 - 可视化展示” 解决方案。
摘要
本文以豆瓣电影短评为研究对象,实现了从数据采集到情感可视化的全流程分析。首先,基于 requests 库与 BeautifulSoup 构建爬虫,突破豆瓣的基础反爬机制,获取指定电影的短评内容及相关信息(评分、发布时间等);其次,利用 SnowNLP 工具进行情感倾向计算,将文本情感量化为情感得分;最后,通过 matplotlib 与 wordcloud 库实现情感分布直方图、评分相关性散点图及高频词云等可视化展示。文中详细阐述了爬虫的反爬应对策略、情感分析的实现原理及可视化图表的设计逻辑,并提供完整可运行的代码案例。通过本文的学习,读者能够掌握文本数据爬取与情感分析的核心技术,为相关领域的数据分析提供参考。
一、项目目标与环境准备
1.1 爬取与分析目标
本次实战的核心目标包括:
- 数据爬取:获取指定豆瓣电影的短评内容,包括
订阅专栏 解锁全文
1878

被折叠的 条评论
为什么被折叠?



