
前言
知乎 Live 作为知识付费领域的重要载体,汇聚了各领域专家的实时分享内容,其热度与销量数据不仅反映了用户对知识的需求偏好,也为内容创作者与平台运营者提供了决策参考。通过系统化采集并分析知乎 Live 的核心数据,可揭示知识付费市场的热点趋势、用户付费意愿及内容价值规律。本文以实战为导向,详细介绍如何使用 Python 爬取知乎 Live 数据,并通过多维度分析挖掘其热度与销量特征,帮助读者掌握知识付费平台数据采集与商业分析的完整流程。
摘要
本文以知乎 Live 平台为爬取对象(实战爬虫链接:知乎 Live),通过 Python 实现 Live 数据的自动化采集,包括 Live 标题、主讲人、价格、参与人数、评分、开始时间、分类标签等核心指标。技术实现涉及动态网页渲染处理、API 接口分析、反爬机制应对等关键环节。爬取完成后,利用 Pandas 与 Matplotlib 进行数据清洗、统计分析与可视化,揭示不同分类 Live 的热度差异、价格与销量的关联性等商业规律。本文提供完整可运行的代码案例,配套输出结果与原理说明,适合知识付费从业者、数据分析师及 Python 爱好者学习实践。
一、环境准备与技术栈
1.1 开发工具与依赖库
本次实战所需工具及库如下表所示:
订阅专栏 解锁全文
929

被折叠的 条评论
为什么被折叠?



