2.3线性表的类型定义
数据结构 手写笔记+思维导图资源,希望大家支持哈哈
建议大家下点赞收藏 pc端下载思维导图哦 看的清晰一点,内容更详细
配套学习的 数据结构与算法基础(青岛大学-王卓)老师 的课程
可以配合课程一起学习哈 (章节思维导图是同步的,文章内图片也有部分截取)
目录
线性表的类型定义
抽象数据类型线性表的定义
ADT List
{
数据对象:D = {a_i | a_i ∈ ElemSet, i = 1, 2, ..., n, n ≥ 0}
数据关系:R = {<a_i, a_{i+1}> | a_i, a_{i+1} ∈ D, i = 1, 2, ..., n-1}
基本操作:
InitList(&L); DestroyList(&L);
ListInsert(&L,i,e); ListDelete(&L,i,&e);
……等等
} ADT List
基本操作(一)
InitList(&L)
(Initialization List)
- 操作结果:构造一个空的线性表L。
DestroyList(&L)
- 初始条件:线性表L已存在。
- 操作结果:销毁线性表L。
ClearList(&L)
- 初始条件:线性表L已存在。
- 操作结果:将L重置为空表。
基本操作(二)
ListEmpty(L)
- 初始条件:线性表L已存在。
- 操作结果:若L为空,返回TRUE;否则返回FALSE。
ListLength(L)
- 初始条件:线性表L已存在。
- 操作结果:返回L中元素的个数。
基本操作(三)
GetElem(L, i, &e)
- 初始条件:线性表L已存在,1 ≤ i ≤ ListLength(L)
- 操作结果:用e返回L中第i个数据元素的值。
LocateElem(L, e, compare())
- 初始条件:线性表L已存在。
- 操作结果:返回L中第一个与e满足Compare()关系的元素位序。若不存在,返回0。
基本操作(四)
PriorElem(L, cur_e, &pre_e)
- 初始条件:线性表L已存在。
- 操作结果:若cur_e是L的元素,且不是第一个,则用pre_e返回它的前驱。否则操作失败。
NextElem(L, cur_e, &next_e)
- 初始条件:线性表L已存在。
- 操作结果:若cur_e是L的元素,且不是最后一个,则用next_e返回它的后继。否则操作失败。
基本操作(五)
ListInsert(&L, i, e)
- 初始条件:线性表L已存在,1 ≤ i ≤ ListLength(L) + 1
- 操作结果:在L的第i个位置插入新元素e,L中原第i个及之后的元素顺序后移。
插入后顺序(设插前为):
( a 1 , a 2 , . . . , a i − 1 , a i , . . . , a n ) ⇒ ( a 1 , a 2 , . . . , a i − 1 , e , a i , . . . , a n ) (a_1, a_2, ..., a_{i-1}, a_i, ..., a_n) \Rightarrow (a_1, a_2, ..., a_{i-1}, e, a_i, ..., a_n) (a1,a2,...,ai−1,ai,...,an)⇒(a1,a2,...,ai−1,e,ai,...,an)
基本操作(六)
ListDelete(&L, i, &e)
- 初始条件:线性表L已存在,1 ≤ i ≤ ListLength(L)
- 操作结果:删除L的第i个元素,并用e返回其值,L中第i+1及之后元素顺序前移。
删除后顺序:
( a 1 , a 2 , . . . , a i − 1 , a i , a i + 1 , . . . , a n ) ⇒ ( a 1 , a 2 , . . . , a i − 1 , a i + 1 , . . . , a n ) (a_1, a_2, ..., a_{i-1}, a_i, a_{i+1}, ..., a_n) \Rightarrow (a_1, a_2, ..., a_{i-1}, a_{i+1}, ..., a_n) (a1,a2,...,ai−1,ai,ai+1,...,an)⇒(a1,a2,...,ai−1,ai+1,...,an)
ListTraverse(L, visit())
- 初始条件:线性表L已存在。
- 操作结果:依次对L中每个元素调用visit()函数。
小结
-
以上所有基本操作均需满足时间和空间复杂度合理。
-
每个操作通常要判断初始条件是否满足。
-
设计的线性表类型需能支持这些操作。
-
线性表可由多种物理结构实现,如顺序存储结构、链式存储结构等。
后续笔记将更新线性表的存储及在存储结构上各操作的实现。
预告:
2.4 线性表的顺序表示和实现
2.5 线性表的链式表示和实现
最后老样子我附上全文的思维导图预览,大家需要的话可以在电脑端下载完整思维导图哦,看的更加清楚
如果文章对您有启发,欢迎点赞、收藏、评论,您的支持是我持续创作的最大动力~
如果文中存在疏漏,欢迎在评论区留言,我会尽力完善~
感谢每一位读者的阅读与陪伴,咱们下期再见! 😊