【数据结构入门】2.3线性表的类型定义(持续更新ing)

#新星杯·14天创作挑战营·第11期#

2.3线性表的类型定义

数据结构 手写笔记+思维导图资源,希望大家支持哈哈
建议大家下点赞收藏 pc端下载思维导图哦 看的清晰一点,内容更详细
配套学习的 数据结构与算法基础(青岛大学-王卓)老师 的课程
可以配合课程一起学习哈 (章节思维导图是同步的,文章内图片也有部分截取)

目录


线性表的类型定义

抽象数据类型线性表的定义

ADT List
{
    数据对象:D = {a_i | a_i ∈ ElemSet, i = 1, 2, ..., n, n ≥ 0}
    数据关系:R = {<a_i, a_{i+1}> | a_i, a_{i+1} ∈ D, i = 1, 2, ..., n-1}
    基本操作:
          InitList(&L);        DestroyList(&L);
        ListInsert(&L,i,e);  ListDelete(&L,i,&e);
        ……等等
} ADT List

基本操作(一)

InitList(&L)(Initialization List)

  • 操作结果:构造一个空的线性表L。

DestroyList(&L)

  • 初始条件:线性表L已存在。
  • 操作结果:销毁线性表L。

ClearList(&L)

  • 初始条件:线性表L已存在。
  • 操作结果:将L重置为空表。

基本操作(二)

ListEmpty(L)

  • 初始条件:线性表L已存在。
  • 操作结果:若L为空,返回TRUE;否则返回FALSE。

ListLength(L)

  • 初始条件:线性表L已存在。
  • 操作结果:返回L中元素的个数。

基本操作(三)

GetElem(L, i, &e)

  • 初始条件:线性表L已存在,1 ≤ i ≤ ListLength(L)
  • 操作结果:用e返回L中第i个数据元素的值。

LocateElem(L, e, compare())

  • 初始条件:线性表L已存在。
  • 操作结果:返回L中第一个与e满足Compare()关系的元素位序。若不存在,返回0。

基本操作(四)

PriorElem(L, cur_e, &pre_e)

  • 初始条件:线性表L已存在。
  • 操作结果:若cur_e是L的元素,且不是第一个,则用pre_e返回它的前驱。否则操作失败。

NextElem(L, cur_e, &next_e)

  • 初始条件:线性表L已存在。
  • 操作结果:若cur_e是L的元素,且不是最后一个,则用next_e返回它的后继。否则操作失败。

基本操作(五)

ListInsert(&L, i, e)

  • 初始条件:线性表L已存在,1 ≤ i ≤ ListLength(L) + 1
  • 操作结果:在L的第i个位置插入新元素e,L中原第i个及之后的元素顺序后移。

插入后顺序(设插前为):

( a 1 , a 2 , . . . , a i − 1 , a i , . . . , a n ) ⇒ ( a 1 , a 2 , . . . , a i − 1 , e , a i , . . . , a n ) (a_1, a_2, ..., a_{i-1}, a_i, ..., a_n) \Rightarrow (a_1, a_2, ..., a_{i-1}, e, a_i, ..., a_n) (a1,a2,...,ai1,ai,...,an)(a1,a2,...,ai1,e,ai,...,an)


基本操作(六)

ListDelete(&L, i, &e)

  • 初始条件:线性表L已存在,1 ≤ i ≤ ListLength(L)
  • 操作结果:删除L的第i个元素,并用e返回其值,L中第i+1及之后元素顺序前移。

删除后顺序:

( a 1 , a 2 , . . . , a i − 1 , a i , a i + 1 , . . . , a n ) ⇒ ( a 1 , a 2 , . . . , a i − 1 , a i + 1 , . . . , a n ) (a_1, a_2, ..., a_{i-1}, a_i, a_{i+1}, ..., a_n) \Rightarrow (a_1, a_2, ..., a_{i-1}, a_{i+1}, ..., a_n) (a1,a2,...,ai1,ai,ai+1,...,an)(a1,a2,...,ai1,ai+1,...,an)

ListTraverse(L, visit())

  • 初始条件:线性表L已存在。
  • 操作结果:依次对L中每个元素调用visit()函数。

小结

  • 以上所有基本操作均需满足时间和空间复杂度合理。

  • 每个操作通常要判断初始条件是否满足。

  • 设计的线性表类型需能支持这些操作。

  • 线性表可由多种物理结构实现,如顺序存储结构、链式存储结构等。

     后续笔记将更新线性表的存储及在存储结构上各操作的实现。
    

预告
2.4 线性表的顺序表示和实现
2.5 线性表的链式表示和实现

最后老样子我附上全文的思维导图预览,大家需要的话可以在电脑端下载完整思维导图哦,看的更加清楚
在这里插入图片描述
如果文章对您有启发,欢迎点赞、收藏、评论,您的支持是我持续创作的最大动力~
如果文中存在疏漏,欢迎在评论区留言,我会尽力完善~
感谢每一位读者的阅读与陪伴,咱们下期再见! 😊

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值